Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the ac...Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the activation mechanism of zinc in Al-Zn alloys is achieved. There are three intermediates in the dissolution process: Znad^+, Znad^2+ and Alad^+, ,of which only Zni can activate Al-Zn alloys. Most Znnd^+ is produced by β-phase,and the alloys with 2. 3% - 3. 8% (wt) Zn dissolve rapidly. The Al-Zn alloys of heart-shaped EIS are active in 3% NaCl solution, thus EIS characteristic can be used to distinguish the activa-tion of Al-Zn alloys.展开更多
A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation...A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation of the alloy during the creep ageing process,including dislocations and multiple precipitates,have been characterized in detail by X-ray diffraction(XRD)and transmission electron microscopy(TEM).For the yield strength,the model considers the multiphase strengthening behavior of the alloy based on strengthening mechanisms,which includes shearable T1 precipitate strengthening,non-shearable T1 precipitate strengthening andθ′precipitate strengthening.Based on creep deformation mechanism,the“multi-stage”creep behavior of the alloy is predicted by introducing the effects of interacting microstructural variables,including the radius of multiple precipitates,dislocation density and solute concentration,into the creep stress−strain model.It is concluded that the results calculated by the model are in a good agreement with the experimental data,which validates the proposed model.展开更多
Isothermal compression experiments were conducted to study the hot deformation behaviors of a Sr-modified Al-Si-Mg alloy in the temperature range of 300-420°C and strain rate range of 0.01-10 s-1.A physically-bas...Isothermal compression experiments were conducted to study the hot deformation behaviors of a Sr-modified Al-Si-Mg alloy in the temperature range of 300-420°C and strain rate range of 0.01-10 s-1.A physically-based model was developed to accurately predict the flow stress.Meanwhile,processing maps were established to optimize hot working parameters.It is found that decreasing the strain rate or increasing the deformation temperature reduces the flow stress.The high activation energy is closely related to the pinning of dislocations from Si-containing dispersoids.Moreover,the deformed grains and the Si-containing dispersoids in the matrix are elongated perpendicular to the compression direction,and incomplete dynamic recrystallization(DRX)is discovered on the elongated boundaries in domain with peak efficiency.The flow instability is mainly attributed to the flow localization,brittle fracture of eutectic Si phase,and formation of adiabatic shear band.The optimum hot working window is 380-420°C and 0.03-0.28 s-1.展开更多
A theoretical model on the solvus line prediction of a film was proposed and applied to a nanogranular A1-Cu system. The calculation results show that the solvus line of solute Cu will markedly lower with the decrease...A theoretical model on the solvus line prediction of a film was proposed and applied to a nanogranular A1-Cu system. The calculation results show that the solvus line of solute Cu will markedly lower with the decrease of grain size, namely, the starting temperature of θ (Al2Cu) precipitation in a nanogranular A1-Cu film will markedly lower than that of conventional coarse grain alloy with the same Cu concentration, and the precipitation temperatures calculated are comparable with the experimental ones. The theoretical model can be simply used to calculate the starting temperature of precipitation in A1-Cu films under three states: ① films with substrate; ②films without substrate; ③ultrafine grain bulk alloy. As a result, the model is universal, moreover, can be, in principle, used to predict precipitation temperature in other systems.展开更多
The results of predicting thermodynamic properties in the full composition range of Ti-Al binary melts in a temperature range from 1973 to 2273 K were obtained by coupling with the developed thermodynamic model for ca...The results of predicting thermodynamic properties in the full composition range of Ti-Al binary melts in a temperature range from 1973 to 2273 K were obtained by coupling with the developed thermodynamic model for calculating mass action concentration N_i of structural units in Ti-Al system based on the atom and molecule coexistence theory(AMCT). Temperature dependence of the activity coefficients of Ti and Al in natural logarithmic form in the infinitely dilute solution(0x_(Ti)0.01) of Ti-Al binary melts was also determined from the calculated activity coefficients of Ti and Al at temperatures of 1973, 2073, 2173, and 2273 K. The standard molar Gibbs free energy change of dissolving pure liquid element i(l) for forming 1%(mass fraction) element i in Ti-Al binary melts further was deduced. With the aid of this model, meanwhile, the determined excess thermodynamic properties, such as the excess molar mixing Gibbs free energy/entropy/enthalpy were also calculated.展开更多
Groundwater is the primary water source in the Kingdom of Saudi Arabia. As result of lack of basic knowledge on irrigation practices, massive abstractions of groundwater occurred in 1980's. A Decision Support Linear ...Groundwater is the primary water source in the Kingdom of Saudi Arabia. As result of lack of basic knowledge on irrigation practices, massive abstractions of groundwater occurred in 1980's. A Decision Support Linear Goal Programming (LGP) model was developed to determine optimal groundwater irrigation levels, to assess the implications for water management policies, and to estimate welfare impact on producer surplus. Due to the reductions of groundwater in 1980's, the Al-Wajid aquifer water levels have dropped in agricultural areas by more than 200 m. Results from this study estimate that the total groundwater of the Al-Wajid aquifer that can be saved is equal to 66 MCM for the first scenario, 147 MCM for the second scenario, and 229 MCM for the third scenario. Regarding the welfare analysis impacts, it is clear that the total gross margin is decreasing up to 7.7% at the end of the year of scenario Ⅲ. Therefore, the third scenario with a water saving increase to 18.1% is recommended as a directive for agricultural policy formation in the future.展开更多
We used genetic algorithm to construct pseudoreceptor site models and made use of the high correlation between interaction energy, which was between the models and the ligands,and bioactivity data of known molecules t...We used genetic algorithm to construct pseudoreceptor site models and made use of the high correlation between interaction energy, which was between the models and the ligands,and bioactivity data of known molecules to predict the bioactivity of unknown molecules For the system of ALS enzyme inhibitor,this emthod can give reasonable predictions of the bioactivity of ALS enzyme inhibitor.展开更多
Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, ar...Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, are briefly described. Secondly, the fun-damentals of various computational methods, including first-principles method, embedded atomic method/molecular dynamic simulation, semi-empirical approaches, and phenomenological DICTRA technique, are demonstrated. Diffusion models re- cently developed for order/disorder transitions and stoichiometric compounds are also briefly depicted. Thirdly, a newly estab- lished diffusivity database for liquid, fcc_A1, Lie, bcc_A2, bcc_B2, and interrnetallic phases in the multicomponent A1 alloys is presented via a few case studies in binary, ternary and quaternary systems. And the integration of various computational techniques and experimental methods is highlighted. The reliability of this diffusivity database is validated by comparing the calculated and measured concentration profiles, diffusion paths, and Kirkendall shifts in various binary, ternary and quaternary diffusion couples. Next, the established diffusivity databases along with thermodynamic and other thermo-physical properties are utilized to simulate the microstructural evolution for Al alloys during solidification, interdiffusion and precipitation. A spe- cial discussion is presented on the phase-field simulation of interdiffusion microstructures in a series of Ni-Al diffusion couples composed of γ, γ', and β phases under the effects of both coherent strain and external compressive force. Future orientations in the establishment of next generation of diffusivity database are finally addressed.展开更多
Fiber-metal laminates(FMLs)consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg,and it(it means FMLs)is laminated by Al alloy and fiber alternatively.Fatigue crack growth rates in no...Fiber-metal laminates(FMLs)consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg,and it(it means FMLs)is laminated by Al alloy and fiber alternatively.Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates.It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate;and crack growth rates in FMLs panels remain constant mostly even when the crack is long,unlike in the monolithic 2024-T3 Al alloy plates.The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory.A program by Matlab was developed to calculate the distribution of bridge stress in FMLs,and then fatigue growth lives were obtained.Finite element models of FMLs were built and meshed finely to analyze the stress distributions.Both results were compared with the experimental results.They agree well with each other.展开更多
基金National Natural Science Foundation of China(Nos.51204147,51274175,51574206,51574207)Program for International S&T Cooperation Projects of China(No.2014DFA50320)+1 种基金Program for International S&T Cooperation Projects of Shanxi Province(No.201381017)Technological Projects of Shanxi Province(No.20150313002-3)
文摘Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the activation mechanism of zinc in Al-Zn alloys is achieved. There are three intermediates in the dissolution process: Znad^+, Znad^2+ and Alad^+, ,of which only Zni can activate Al-Zn alloys. Most Znnd^+ is produced by β-phase,and the alloys with 2. 3% - 3. 8% (wt) Zn dissolve rapidly. The Al-Zn alloys of heart-shaped EIS are active in 3% NaCl solution, thus EIS characteristic can be used to distinguish the activa-tion of Al-Zn alloys.
基金the National Key R&D Program of China(No.2017YFB0306300)the National Natural Science Foundation of China(Nos.51675538,51601060)+1 种基金the State Key Laboratory of High-performance Complex Manufacturing,China(No.ZZYJKT2018-18)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2018zzts151).
文摘A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation of the alloy during the creep ageing process,including dislocations and multiple precipitates,have been characterized in detail by X-ray diffraction(XRD)and transmission electron microscopy(TEM).For the yield strength,the model considers the multiphase strengthening behavior of the alloy based on strengthening mechanisms,which includes shearable T1 precipitate strengthening,non-shearable T1 precipitate strengthening andθ′precipitate strengthening.Based on creep deformation mechanism,the“multi-stage”creep behavior of the alloy is predicted by introducing the effects of interacting microstructural variables,including the radius of multiple precipitates,dislocation density and solute concentration,into the creep stress−strain model.It is concluded that the results calculated by the model are in a good agreement with the experimental data,which validates the proposed model.
基金Project(51375502)supported by the National Natural Science Foundation of ChinaProject(2015CX002)supported by the Innovation-driven Plan in Central South University,China+2 种基金Project(2016RS2006)supported by the Science and Technology Leading Talent in Hunan Province,ChinaProject(Q2015140)supported by the Program of Chang Jiang Scholars of Ministry of Education,ChinaProject(2016JJ1017)supported by the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China
文摘Isothermal compression experiments were conducted to study the hot deformation behaviors of a Sr-modified Al-Si-Mg alloy in the temperature range of 300-420°C and strain rate range of 0.01-10 s-1.A physically-based model was developed to accurately predict the flow stress.Meanwhile,processing maps were established to optimize hot working parameters.It is found that decreasing the strain rate or increasing the deformation temperature reduces the flow stress.The high activation energy is closely related to the pinning of dislocations from Si-containing dispersoids.Moreover,the deformed grains and the Si-containing dispersoids in the matrix are elongated perpendicular to the compression direction,and incomplete dynamic recrystallization(DRX)is discovered on the elongated boundaries in domain with peak efficiency.The flow instability is mainly attributed to the flow localization,brittle fracture of eutectic Si phase,and formation of adiabatic shear band.The optimum hot working window is 380-420°C and 0.03-0.28 s-1.
基金The National Natural Science Foundation of China (No 50471014)The Science and Technology Foundation of Shanghai (No0210nm017)
文摘A theoretical model on the solvus line prediction of a film was proposed and applied to a nanogranular A1-Cu system. The calculation results show that the solvus line of solute Cu will markedly lower with the decrease of grain size, namely, the starting temperature of θ (Al2Cu) precipitation in a nanogranular A1-Cu film will markedly lower than that of conventional coarse grain alloy with the same Cu concentration, and the precipitation temperatures calculated are comparable with the experimental ones. The theoretical model can be simply used to calculate the starting temperature of precipitation in A1-Cu films under three states: ① films with substrate; ②films without substrate; ③ultrafine grain bulk alloy. As a result, the model is universal, moreover, can be, in principle, used to predict precipitation temperature in other systems.
基金Project(U1560203)supported by the Joint Funds of the National Natural Science Foundation of ChinaProject(51274031)supported by the National Natural Science Foundation of China
文摘The results of predicting thermodynamic properties in the full composition range of Ti-Al binary melts in a temperature range from 1973 to 2273 K were obtained by coupling with the developed thermodynamic model for calculating mass action concentration N_i of structural units in Ti-Al system based on the atom and molecule coexistence theory(AMCT). Temperature dependence of the activity coefficients of Ti and Al in natural logarithmic form in the infinitely dilute solution(0x_(Ti)0.01) of Ti-Al binary melts was also determined from the calculated activity coefficients of Ti and Al at temperatures of 1973, 2073, 2173, and 2273 K. The standard molar Gibbs free energy change of dissolving pure liquid element i(l) for forming 1%(mass fraction) element i in Ti-Al binary melts further was deduced. With the aid of this model, meanwhile, the determined excess thermodynamic properties, such as the excess molar mixing Gibbs free energy/entropy/enthalpy were also calculated.
文摘Groundwater is the primary water source in the Kingdom of Saudi Arabia. As result of lack of basic knowledge on irrigation practices, massive abstractions of groundwater occurred in 1980's. A Decision Support Linear Goal Programming (LGP) model was developed to determine optimal groundwater irrigation levels, to assess the implications for water management policies, and to estimate welfare impact on producer surplus. Due to the reductions of groundwater in 1980's, the Al-Wajid aquifer water levels have dropped in agricultural areas by more than 200 m. Results from this study estimate that the total groundwater of the Al-Wajid aquifer that can be saved is equal to 66 MCM for the first scenario, 147 MCM for the second scenario, and 229 MCM for the third scenario. Regarding the welfare analysis impacts, it is clear that the total gross margin is decreasing up to 7.7% at the end of the year of scenario Ⅲ. Therefore, the third scenario with a water saving increase to 18.1% is recommended as a directive for agricultural policy formation in the future.
文摘We used genetic algorithm to construct pseudoreceptor site models and made use of the high correlation between interaction energy, which was between the models and the ligands,and bioactivity data of known molecules to predict the bioactivity of unknown molecules For the system of ALS enzyme inhibitor,this emthod can give reasonable predictions of the bioactivity of ALS enzyme inhibitor.
基金supported by the National Basic Research Program of China (Grant No. 2011CB610401)the Creative Research Group of the National Natural Science Foundation of China (Grant No. 51021063)+1 种基金the National Natural Science Foundation of China (Grant No. 50831007)the Science Center for Phase Diagrams & Materials Design and Manu-facture, Central South University
文摘Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, are briefly described. Secondly, the fun-damentals of various computational methods, including first-principles method, embedded atomic method/molecular dynamic simulation, semi-empirical approaches, and phenomenological DICTRA technique, are demonstrated. Diffusion models re- cently developed for order/disorder transitions and stoichiometric compounds are also briefly depicted. Thirdly, a newly estab- lished diffusivity database for liquid, fcc_A1, Lie, bcc_A2, bcc_B2, and interrnetallic phases in the multicomponent A1 alloys is presented via a few case studies in binary, ternary and quaternary systems. And the integration of various computational techniques and experimental methods is highlighted. The reliability of this diffusivity database is validated by comparing the calculated and measured concentration profiles, diffusion paths, and Kirkendall shifts in various binary, ternary and quaternary diffusion couples. Next, the established diffusivity databases along with thermodynamic and other thermo-physical properties are utilized to simulate the microstructural evolution for Al alloys during solidification, interdiffusion and precipitation. A spe- cial discussion is presented on the phase-field simulation of interdiffusion microstructures in a series of Ni-Al diffusion couples composed of γ, γ', and β phases under the effects of both coherent strain and external compressive force. Future orientations in the establishment of next generation of diffusivity database are finally addressed.
基金supported by Chengdu Aircraft Design&Research Institutethe National Natural Science Foundation of China(Grant No.11002111)the Scholarship of Study Abroad Council
文摘Fiber-metal laminates(FMLs)consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg,and it(it means FMLs)is laminated by Al alloy and fiber alternatively.Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates.It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate;and crack growth rates in FMLs panels remain constant mostly even when the crack is long,unlike in the monolithic 2024-T3 Al alloy plates.The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory.A program by Matlab was developed to calculate the distribution of bridge stress in FMLs,and then fatigue growth lives were obtained.Finite element models of FMLs were built and meshed finely to analyze the stress distributions.Both results were compared with the experimental results.They agree well with each other.