期刊文献+
共找到588篇文章
< 1 2 30 >
每页显示 20 50 100
Artificial Neural Network and Fuzzy Logic Based Techniques for Numerical Modeling and Prediction of Aluminum-5%Magnesium Alloy Doped with REM Neodymium
1
作者 Anukwonke Maxwell Chukwuma Chibueze Ikechukwu Godwills +1 位作者 Cynthia C. Nwaeju Osakwe Francis Onyemachi 《International Journal of Nonferrous Metallurgy》 2024年第1期1-19,共19页
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ... In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R). 展开更多
关键词 Al-5%Mg Alloy NEODYMIUM Artificial neural network fuzzy logic Average Grain Size and Mechanical Properties
下载PDF
Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network
2
作者 YÜNKÜL Kaan KARAÇOR Fatih +1 位作者 GÜRBÜZ Ayhan BUDAK TahsinÖmür 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3108-3122,共15页
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results... This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination. 展开更多
关键词 Undrained shear strength Liquidity index Water content ratio Non-linear regression Artificial neural networks fuzzy logic
下载PDF
A REALIZATION OF FUZZY LOGIC BY A NEURAL NETWORK 被引量:1
3
作者 杨忠 鲍明 赵淳生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期104-108,共5页
This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and N... This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model. 展开更多
关键词 fuzzy logic NEURON neural network propagation algorithm fault diagnosis
下载PDF
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
4
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 Artificial neural network fuzzy logic control Weld pool depth Seamtracking
下载PDF
Comparative Analysis between Conventional PI, Fuzzy Logic and Artificial Neural Network Based Speed Controllers of Induction Motor with Considering Core Loss and Stray Load Loss
5
作者 Md. Rifat Hazari Effat Jahan +1 位作者 Mohammad Abdul Mannan Junji Tamura 《Journal of Mechanics Engineering and Automation》 2017年第1期50-57,共8页
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform... Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM. 展开更多
关键词 Core loss stray load loss PI controller fuzzy logic controller artificial neural network controller
下载PDF
Intelligent Control of SIRES Using Neural Networks and Fuzzy Logic
6
作者 Zeel Maheshwari Rama Ramakumar 《Journal of Power and Energy Engineering》 2017年第9期156-171,共16页
Development of energy-resources-poor remote rural areas of the world has been discussed by many in the past. Harnessing locally available renewable energy resources as an environmentally friendly option is gaining mom... Development of energy-resources-poor remote rural areas of the world has been discussed by many in the past. Harnessing locally available renewable energy resources as an environmentally friendly option is gaining momentum. Smart Integrated Renewable Energy Systems (SIRES) offer a resilient and economic path to “energize” the area and reach this goal. This paper discusses its intelligent control using neural networks and fuzzy logic. 展开更多
关键词 ENERGIZATION Integrated RENEWABLE Energy neural network fuzzy logic Control
下载PDF
A Neuro T-Norm Fuzzy Logic Based System
7
作者 Alex Tserkovny 《Journal of Software Engineering and Applications》 2024年第8期638-663,共26页
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi... In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM. 展开更多
关键词 Neuro-fuzzy System neural network fuzzy logic Modus Ponnens Modus Tollens fuzzy Conditional Inference
下载PDF
AN INTELLIGENT TOOL CONDITION MONITORING SYSTEM USING FUZZY NEURAL NETWORKS 被引量:3
8
作者 赵东标 KeshengWang OliverKrimmel 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期169-175,共7页
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia... Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities. 展开更多
关键词 tool condition monitoring neural networks fuzzy logic acoustic emission force sensor fuzzy neural networks
下载PDF
Using fuzzy neural networks for RMB/USD real exchange rate forecasting 被引量:2
9
作者 惠晓峰 李喆 魏庆泉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第2期189-192,共4页
In order to aim at improving the forecasting performance of the RMB/USD exchange rate, this paper proposes a new architecture of fuzzy neural networks based on fuzzy logic, and the method of point differential, which ... In order to aim at improving the forecasting performance of the RMB/USD exchange rate, this paper proposes a new architecture of fuzzy neural networks based on fuzzy logic, and the method of point differential, which guarantees not only the direction of weight correction, but also the needed precision for the BP algorithm. In applying genetic algorithms for optimal performance, this approach, in the forecasting of the RMB/USD real exchange rate from 1994 to 2000, obviously outperforms typical BP Neural Networks and exhibits a higher capacity in regard to nonlinear, time-variablility, and illegibility of the exchange rate. 展开更多
关键词 fuzzy neural networks fuzzy logic genetic algorithm RMB/USD real exchange rate
下载PDF
Application of fuzzy neural network to the nuclear power plant in process fault diagnosis
10
作者 LIUYong-kuo XIAHong XIEChun-li 《Journal of Marine Science and Application》 2005年第1期34-38,共5页
The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. F... The fuzzy logic and neural networks are combined in this paper, setting upthe fuzzy neural network (FNN ) ; meanwhile, the distinct differences and connections between thefuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN areintroduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to thenuclear power planl, and the intelligence fault diagnostic system of the nuclear power plant isbuilt based on the FNN . The fault symptoms and the possibility of the inverted U-tube breakaccident of steam generator are discussed. In order to test the system' s validity, the invertedU-tube break accident of steam generator is used as an example and many simulation experiments areperformed. The test result shows that the FNN can identify the fault. 展开更多
关键词 neural networks fuzzy logic fuzzy neural network (FNN) inverted U-tube nuclear power plant
下载PDF
Extraction Fuzzy Linguistic Rules from Neural Networks for Maximizing Tool Life in High-speed Milling Process 被引量:2
11
作者 SHEN Zhigang HE Ning LI Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期341-346,共6页
In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent ... In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s. 展开更多
关键词 high-speed milling rule extraction neural network fuzzy logic
下载PDF
A combined technique of Kalman filter, artificial neural network and fuzzy logic for gas turbines and signal fault isolation 被引量:8
12
作者 Simone TOGNI Theoklis NIKOLAIDIS Suresh SAMPATH 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期124-135,共12页
The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the perfo... The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the performance-based diagnostics of single and multiple failures on a two-spool engine. The aim of this technique is to combine the strength of each methodology and provide a high success rate for single and multiple failures with the presence of measurement malfunctions. A combination of KF(Kalman Filter), ANN(Artificial Neural Network) and FL(Fuzzy Logic) is used in this research in order to improve the success rate, to increase the flexibility and the number of failures detected and to combine the strength of multiple methods to have a more robust solution. The Kalman filter has in his strength the measurement noise treatment, the artificial neural network the simulation and prediction of reference and deteriorated performance profile and the fuzzy logic the categorization flexibility, which is used to quantify and classify the failures. In the area of GT(Gas Turbine) diagnostics, the multiple failures in combination with measurement issues and the utilization of multiple methods for a 2-spool industrial gas turbine engine has not been investigated extensively.This paper reports the key contribution of each component of the methodology and brief the results in the quantification and classification success rate. The methodology is tested for constant deterioration and increasing noise and for random deterioration. For the random deterioration and nominal noise of 0.4%, in particular, the quantification success rate is above 92.0%, while the classification success rate is above 95.1%. Moreover, the speed of the data processing(1.7 s/sample)proves the suitability of this methodology for online diagnostics. 展开更多
关键词 Artificial neural network Data analytics Data filtering DIAGNOSTICS fuzzy logic Gas turbine Kalman filter Performance-based diagnostics
原文传递
Inverse Control of Cable-driven Parallel Mechanism Using Type-2 Fuzzy Neural Network 被引量:9
13
作者 LI Cheng-Dong YI Jian-Qiang YU Yi ZHAO Dong-Bin 《自动化学报》 EI CSCD 北大核心 2010年第3期459-464,共6页
关键词 机器人 数学模型 最小二乘法 动力学
下载PDF
A NEW APPROACH FOR MULTILEVEL IMAGE SEGMENTATION BASED ON FUZZY CELLULAR NEURAL NETWORK
14
作者 Zhao Jianye Yu Daoheng (Department of Electronics & Center for Information Science, Peking University, Beijing 100871) 《Journal of Electronics(China)》 2000年第1期46-52,共7页
A new approach for multilevel image segmentation based on fuzzy cellular neural network(CNN) is proposed. Based on a novel fuzzy CNN, a new template is proposed for multilevel image segmentation. The result of compute... A new approach for multilevel image segmentation based on fuzzy cellular neural network(CNN) is proposed. Based on a novel fuzzy CNN, a new template is proposed for multilevel image segmentation. The result of computer simulation proves this approach is reasonable. The stability of the fuzzy neural network is also analyzed in this paper. 展开更多
关键词 MULTILEVEL image SEGMENTATION CELLULAR neural network fuzzy logic
下载PDF
Fuzzy neural networks for arc welding quality control
15
作者 李迪 宋永伦 井上胜境 《China Welding》 EI CAS 2000年第2期6-16,共11页
Fuzzy Logic Control (FLC) is a promising control strategy in welding process control due to its ability for solving control problem with uncertainty as well as its independence on the analytical mathematics model. How... Fuzzy Logic Control (FLC) is a promising control strategy in welding process control due to its ability for solving control problem with uncertainty as well as its independence on the analytical mathematics model. However, in basic FLC, the fuzzy rule relies heavily on the experts’ (e.g. advanced welders’) experience. In addition to this, the membership function for fuzzy set is non adaptive, i.e. it remains unchanged as long as they are determined by experience or other means. For welding process, which is time variable systems and strong disturbance exists in it, fixed membership function may not guarantee the required system performance, and attempts should be made to improve the system performance by adopting adaptive membership function. Therefore, the automatically determination of the fuzzy rule and in process adaptation of membership function are required for the advanced welding process control. This paper discussed the possibility by using the combination between FLC and neural network (NN) to realize the above propose. The adaptation of membership function as well as the self organizing of fuzzy rule are realized by the self learning and competitiveness of the NN. Taking GTAW process welds bead width regulating system as the controlled plant, the proposed algorithm was testified for such a process. Computer simulations showed the improvement of the system characteristics. 展开更多
关键词 fuzzy logic control neural network membership function GTAW molten pL
下载PDF
Modeling of Multi-Freedom Ship Motions in Irregular Waves with Fuzzy Neural Networks
16
作者 余建星 陆培毅 +1 位作者 高喜峰 夏锦祝 《海洋工程:英文版》 2003年第2期255-264,共10页
In this paper, the neural network technology is combined with the fuzzy set theory to model the wave-induced ship motions in irregular seas. This combination makes possible the handling of a non-linear dynamic system ... In this paper, the neural network technology is combined with the fuzzy set theory to model the wave-induced ship motions in irregular seas. This combination makes possible the handling of a non-linear dynamic system with insufficient input information. The numerical results from the strip theory are used to train the networks and to demonstrate the validity of the proposed procedure. 展开更多
关键词 strip theory ship motions neural network fuzzy logic system modeling
下载PDF
Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference
17
作者 Evans Nyasha Chogumaira Takashi Hiyama 《Energy and Power Engineering》 2011年第1期9-16,共8页
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu... This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes. 展开更多
关键词 ELECTRICITY PRICE Forecasting SHORT-TERM Load Forecasting ELECTRICITY MARKETS Artificial neural networks fuzzy logic
下载PDF
Hybrid Designing of a Neural System by Combining Fuzzy Logical Framework and PSVM for Visual Haze-Free Task
18
作者 Hong Hu Liang Pang +1 位作者 Dongping Tian Zhongzhi Shi 《International Journal of Intelligence Science》 2013年第4期145-161,共17页
Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain.... Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree. 展开更多
关键词 Artificial BRAIN Research Brain-Like Computer fuzzy logic neural network Machine Learning HOPFIELD neural network Bounded fuzzy Operator
下载PDF
Output-back fuzzy logic systems and equivalence with feedback neural networks 被引量:3
19
作者 LI HongxingDepartment of Mathematics, Beijing Normal University, Beijing 100875, China 《Chinese Science Bulletin》 SCIE EI CAS 2000年第7期592-596,共5页
A new idea, output-back fuzzy logic systems, is proposed. It is proved that output-back fuzzy logic systems must be equivalent to feedback neural networks. After the notion of generalized fuzzy logic systems is define... A new idea, output-back fuzzy logic systems, is proposed. It is proved that output-back fuzzy logic systems must be equivalent to feedback neural networks. After the notion of generalized fuzzy logic systems is defined, which contains at least a typical fuzzy logic system and an output-back fuzzy logic system, one important conclusion is drawn that generalized fuzzy logic systems are almost equivalent to neural networks. 展开更多
关键词 output-back fuzzy logic systems generalized fuzzy logic systems feedforward neural networks FEEDBACK neural networks.
原文传递
Detection of False Data Injection Attacks on Load Frequency Control System with Renewable Energy Based on Fuzzy Logic and Neural Networks 被引量:2
20
作者 Ziyu Chen Jizhong Zhu +2 位作者 Shenglin Li Yun Liu Tengyan Luo 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1576-1587,共12页
Load frequency control(LFC)system may be destroyed by false data injection attacks(FDIAs)and consequently the security of the power system will be impacted.High-efficiency FDIA detection can reduce the damage and powe... Load frequency control(LFC)system may be destroyed by false data injection attacks(FDIAs)and consequently the security of the power system will be impacted.High-efficiency FDIA detection can reduce the damage and power loss to the power system.This paper defines various typical and hybrid FDIAs,and the influence of several FDIAs with different characteristics on the multi-area LFC system is analyzed.To detect various attacks,we introduce an improved data-driven method,which consists of fuzzy logic and neural networks.Fuzzy logic has the features of high applicability,robustness,and agility,which can make full use of samples.Further,we construct the LFC system on MATLAB/Simulink platform,and systematically simulate the experiments that FDIAs affect the LFC system by tampering with measurement data.Among them,considering the large-scale penetration of renewable energy with intermittency and volatility,we generate three simulation scenarios with or without renewable energy generation.Then,the performance for detecting FDIAs of the improved method is verified by simulation data samples. 展开更多
关键词 Load frequency control(LFC) wind turbine and photovoltaic generation fuzzy logic neural network
原文传递
上一页 1 2 30 下一页 到第
使用帮助 返回顶部