Aldo-keto reductases(AKRs)are a superfamily of enzymes that play crucial roles in various cellular processes,including the metabolism of xenobiotics,steroids,and carbohydrates.A growing body of evidence has unveiled t...Aldo-keto reductases(AKRs)are a superfamily of enzymes that play crucial roles in various cellular processes,including the metabolism of xenobiotics,steroids,and carbohydrates.A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers.AKRs are aberrantly expressed in a wide range of malignant tumors.Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance.AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression.Inhibition of aldose reductase(AR),either alone or in combination with chemotherapeutic drugs,has evolved as a pragmatic therapeutic option for cancer.Several classes of synthetic aldo-keto reductase(AKR)inhibitors have been developed as potential anticancer agents,some of which have shown promise in clinical trials.Many AKR inhibitors from natural sources also exhibit anticancer effects.Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies.These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy.In this review,we discuss the physiological functions of human AKRs,the aberrant expression of AKRs in malignancies,the involvement of AKRs in the acquisition of cancer hallmarks,and the role of AKRs in oncogenic signaling,and drug resistance.Finally,the potential of aldose reductase inhibitors(ARIs)as anticancer drugs is summarized.展开更多
Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chem...Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chemotherapy.Therefore,new therapeutic targets are needed.We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different.The analysis showed that AKR1C3 was upregulated in tumors,and high AKR1C3 expression was associated with a poorer prognosis in HCC patients.In vitro,assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines.Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo.To explore the mechanism,we performed pathway enrichment analysis,and the results linked the expression of AKR1C3 with prostaglandin F2 alpha(PGF2a)downstream target genes.Suppression of AKR1C3 activity reduced the production of PGF2a,and supplementation with PGF2a restored the growth of indomethacin-treated Huh7 cells.Knockdown of the PGF receptor(PTGFR)and treatment with a PTGFR inhibitor significantly reduced HCC growth.We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib.In summary,our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α,and suppression of PTGFR limited HCC growth.Therefore,targeting the AKR1C3-PGF2a-PTGFR axis may be a new strategy for the treatment of HCC.展开更多
Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expressio...Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expression by Western blot,RNA sequencing and qRT-PCR.The differences of AKR1Cs expression were analyzed and inferred.Use Assay of NADH and NAD^(+)content to verify the inference.The Docking experience was used to verify the affinity between MPA,MCFLA,MLS and AKR1C3.Results:Our RNA-seq results showed de novo NAD biosynthesis-related genes and NAD(P)H-dependent oxidoreductases were significantly upregulated in cis-platin-resistant HepG2 hepatic cancer cells(HepG2-RC cells)compared with HepG2 cells.At least 63 NAD(P)H-dependent reductase/oxidases were upregulated in HepG2-RC cells at least twofold.Knockdown of AKR1Cs could increase cis-platin sensitivity in HepG2-RC cells about two-fold.Interestingly,the AKR1C inhibitor meclofenamic acid could increase the cis-platin sensitivity of HepG2-RC cells about eight-fold,indicating that the knockdown of AKR1Cs only partially reversed the resistance.Meanwhile,the amount of total NAD and the ratio of NADH/NAD^(+)were increased in HepG2-RC cells compared with HepG2 cells.The ratio of NADH/NAD^(+)in HepG2-RC cells was almost seven-fold higher than in HepG2 or HL-7702 cells.Increased NADH expression could be explained as a directly operating antioxidant to scavenge cis-platin-induced radicals.Conclusion:We report here that NADH,which is produced by NAD(P)Hdependent oxidoreductases,plays a key role in the AKR-associated cis-platin resistance of HepG2 hepatic cancer cells.展开更多
Foxtail millet (Setaria italica L.) is a drought-tolerant millet crop of arid and semi-arid regions. Aldo-keto reductases (AKRs) are significant part of plant defence mechanism, having an ability to confer multiple st...Foxtail millet (Setaria italica L.) is a drought-tolerant millet crop of arid and semi-arid regions. Aldo-keto reductases (AKRs) are significant part of plant defence mechanism, having an ability to confer multiple stress tolerance. In this study, AKR1 gene expression was studied in roots and leaves of foxtail millet subjected to different regimes of PEG- and NaCl-stress for seven days. The quantitative Real-time PCR expression analysis in both root and leaves showed upregulation of AKR1 gene during PEG and salt stress. A close correlation exits between expression of AKR1 gene and the rate of lipid peroxidation along with the retardation of growth. Tissue-specific differences were found in the AKR1 gene expression to the stress intensities studied. The reduction in root and shoot growth under both stress conditions were dependent on stress severity. The level of lipid peroxidation as indicated by MDA formation was significantly increased in roots and leaves along with increased stress levels. Finally, these findings support the early responsive nature of AKR1 gene and seem to be associated at least in part with its ability to contribute in antioxidant defence related pathways which could provide a better protection against oxidative stress under stress conditions.展开更多
OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bla...OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bladder RT4 cells were used as tool cells and treated with AA-Ⅰ0,0.5,1.0 and 2μmol·L^(-1)for 24 h.Cell viability was detected using the CCK-8 method,and the half maximal inhibition concentration(IC_(50))was calculated using the CCK-8 method and the level of DNA adduct production was calculated.②hiHeps and RT4 cells were treated with AKR inhibitor luteotin(0,5,10 and 25μmol·L^(-1))+AA-Ⅰ0.2 and 1.0μmol·L^(-1)for 24 h,respectively,and the levels of DNA adducts were detected by a liquid chromatography-tandem mass spectrometer(LC-MS/MS).③hiHeps cells were incubated with 80 nmol·L^(-1)small interfering RNAs(si-AKRs)for 48 h and treated with AA-Ⅰ1.0μmol·L^(-1)for 24 h.Real-time qualitative PCR(RT-qPCR)method was used to detect the mRNA expression of AKRs gene and LC-MS/MS technology was used to investigate the effect of specific AKR gene knockdown on DNA adduct levels.④500 nmol·L^(-1)human AKR recombinant proteins AKR1A1 and AA-Ⅰwere incubated in vitro under anaerobic conditions and the formation of AA-Ⅰ-DNA adducts was detected.RESULTS①The IC_(50)of AA-Ⅰto hiHeps and RT4 cells was 1.9 and 0.42μmol·L^(-1),respec⁃tively.The level of DNA adduct production of the two cell lines was significantly different(P<0.01).②Luteolin≥5μmol·L^(-1)significantly inhibited the production of AA-Ⅰ-DNA adducts in both cells(P<0.05),and there was a concentration-dependent effect in hiHeps cells(P<0.01,R=0.84).③In the AKR family,the knockdown of AKR1A1 gene up to 80%inhibited the generation of AA-Ⅰ-DNA adducts by 30%-40%.④The AA-Ⅰ-DNA adducts were detected in the incubation of recombinant protein AKR1A1 and AA-Ⅰunder anaerobic conditions in vitro,approximately 1 adduct per 107 nucleotides.CONCLU⁃SION AKR1A1 is involved in AA-Ⅰbioactivation,providing a reference for elucidation of the carcino⁃genic mechanism of AA-Ⅰ.展开更多
AIdo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-...AIdo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were measured in prostate cancer cells. Aido-keto reductase family 1 member C3 mRNA and protein level were detected by RT-PCR and Western bolt analyses, respectively. Computer analysis with AutoDock Tools explored the molecular interaction of berberine with Aldo-keto reductase family 1 member C3. We found that berberine inhibited 22Rvl cells proliferation and decreased cellular testosterone formation in a dose-dependent manner. Berberine inhibited Aldo-keto reductase family I member C3 enzyme activity, rather than influenced mRNA and protein expressions. Molecular docking study demonstrated that berberine could enter the active center of Aldo-keto reductase family 1 member C3 and form π-π interaction with the amino-acid residue Phe306 and Phe311. In conclusion, the structural interaction of berberine with Aldo-keto reductase family 1 member C3 is attributed to the suppression of Aldo-keto reductase family I member C3 enzyme activity and the inhibition of 22Rvl prostate cancer cell growth by decreasing the intfacellular androgen synthesis. Our result provides the experimental basis for the design, research, and development of AKRlC3 inhibitors using berberine as the lead compound.展开更多
The red-orange emitting phosphor YBO3:Eu3+was prepared by aldo-keto method and solid state diffusion. Aldo-keto method implied to decrease the processing time and heating temperature. The red-orange emitting phospho...The red-orange emitting phosphor YBO3:Eu3+was prepared by aldo-keto method and solid state diffusion. Aldo-keto method implied to decrease the processing time and heating temperature. The red-orange emitting phosphor was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as emission and excitation photoluminescence spectra re-corded at room temperature. The result of aldo-keto method showed that the phosphor YBO3:Eu3+could be obtained at 900 °C in less time^60%as compared to solid state diffusion (SSD). The material showed that the strongest emission peak at 595 nm under excitation at 233 nm was only due to forced magnetic dipole 5D0→7F1 transition of Eu3+ions. Significantly, the emission inten-sity of YBO3:Eu3+phosphor prepared by aldo-keto method was relatively higher as compared to that obtained by the solid state diffusion.展开更多
The involvement of aldo-keto reductases (AKRs) in tumorigenesis is widely reported, but their roles in the pathological process are not generally recognized due to inconsistent measure- ments of their expression. To...The involvement of aldo-keto reductases (AKRs) in tumorigenesis is widely reported, but their roles in the pathological process are not generally recognized due to inconsistent measure- ments of their expression. To overcome this problem, we simultaneously employed real-time PCR to examine gene expression and multiple reaction monitoring (MRM) of mass spectrometry (MS) to examine the protein expression of AKRs in five different hepatic cell lines. These include one rela- tively normal hepatic cell line, L-02, and four hepatocellular carcinoma (HCC) cell lines, HepG2, HUH7, BEL7402 and SMMC7721. The results of real-time PCR showed that expression of genes encoding the AKR1C family members rather than AKR1A and AKR1B was associated with tumor, and most of genes encoding AKRs were highly expressed in HUH7. Similar observations were obtained through MRM. Different from HUH7, the protein abundance of AKR1A and AKR1B was relatively consistent among the other four hepatic cell lines, while protein expression of AKR1C varied significantly compared to L-02. Therefore, we conclude that the abundant distri- bution of AKR 1C proteins is likely to be associated with liver tumorigenesis, and the AKR expres- sion status in HuH7 is completely different from other liver cancer cell lines. This study, for the first time, provided both overall and quantitative information regarding the expression of AKRs at both mRNA and protein levels in hepatic cell lines. Our observations put the previous use of AKRs as a biomarker into question since it is only consistent with our data from HUH7. Furthermore, the data presented herein demonstrated that quantitative evaluation and comparisons within a protein fam- ily at both mRNA and protein levels were feasible using current techniques.展开更多
Aldo-keto reductase 1C3(AKR1C3)is a potential target for the treatment of acute myeloid leukaemia and T-cell acute lymphoblastic leukaemia.In this study,pharmacophore models,molecular docking and virtual screening of ...Aldo-keto reductase 1C3(AKR1C3)is a potential target for the treatment of acute myeloid leukaemia and T-cell acute lymphoblastic leukaemia.In this study,pharmacophore models,molecular docking and virtual screening of target prediction were used to find a potential AKR1C3 inhibitor.Firstly,eight bacteriocin derivatives(Z1-Z8)were selected as training sets to construct 20 pharmacophore models.The best pharmacophore model MODEL_016 was obtained by Decoy test(the enrichment degree was 21.5117,and the fitting optimisation degree was 0.9668).Secondly,MODEL_016 was used for the virtual screening of ZINC database.Thirdly,the hit 83256 molecules were docked into the AKR1C3 protein.Compared to the total scores and interactions between compounds and protein,16532 candidate compounds with higher docking scores and interactions with important residues PHE306 and TRP227 were screened.Lastly,eight compounds(A1-A8)that had good absorption,distribution,metabolism,excretion and toxicity(ADMET)properties were obtained by target prediction.Compounds A3 and A7 with high total score and good target prediction results were selected for in vitro biological activity test,whose IC_(50) values were 268.3 and 88.94µmol/L,respectively.The results provide an important foundation for the discovery of novel AKR1C3 inhibitors.The research methods used in this study can also provide important references for the research and development of new drugs.展开更多
基金SN and GBR are supported by grants from the Science and Engineering Research Board,Government of India(EMR/2016/001984)Indian Council of Medical Research.
文摘Aldo-keto reductases(AKRs)are a superfamily of enzymes that play crucial roles in various cellular processes,including the metabolism of xenobiotics,steroids,and carbohydrates.A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers.AKRs are aberrantly expressed in a wide range of malignant tumors.Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance.AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression.Inhibition of aldose reductase(AR),either alone or in combination with chemotherapeutic drugs,has evolved as a pragmatic therapeutic option for cancer.Several classes of synthetic aldo-keto reductase(AKR)inhibitors have been developed as potential anticancer agents,some of which have shown promise in clinical trials.Many AKR inhibitors from natural sources also exhibit anticancer effects.Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies.These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy.In this review,we discuss the physiological functions of human AKRs,the aberrant expression of AKRs in malignancies,the involvement of AKRs in the acquisition of cancer hallmarks,and the role of AKRs in oncogenic signaling,and drug resistance.Finally,the potential of aldose reductase inhibitors(ARIs)as anticancer drugs is summarized.
基金National Yang Ming Chiao Tung University Far Eastern Memorial Hospital Joint Research Programs(NYCU-FEMH 109DN03,110DN06,111DN04,112DN05).
文摘Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chemotherapy.Therefore,new therapeutic targets are needed.We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different.The analysis showed that AKR1C3 was upregulated in tumors,and high AKR1C3 expression was associated with a poorer prognosis in HCC patients.In vitro,assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines.Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo.To explore the mechanism,we performed pathway enrichment analysis,and the results linked the expression of AKR1C3 with prostaglandin F2 alpha(PGF2a)downstream target genes.Suppression of AKR1C3 activity reduced the production of PGF2a,and supplementation with PGF2a restored the growth of indomethacin-treated Huh7 cells.Knockdown of the PGF receptor(PTGFR)and treatment with a PTGFR inhibitor significantly reduced HCC growth.We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib.In summary,our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α,and suppression of PTGFR limited HCC growth.Therefore,targeting the AKR1C3-PGF2a-PTGFR axis may be a new strategy for the treatment of HCC.
基金supported by the Science and Technology Development Plan Project of Jilin Province,China[20200708101YY]The Foundation of Jilin Province Science and Technology Department[20200801062GH].
文摘Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expression by Western blot,RNA sequencing and qRT-PCR.The differences of AKR1Cs expression were analyzed and inferred.Use Assay of NADH and NAD^(+)content to verify the inference.The Docking experience was used to verify the affinity between MPA,MCFLA,MLS and AKR1C3.Results:Our RNA-seq results showed de novo NAD biosynthesis-related genes and NAD(P)H-dependent oxidoreductases were significantly upregulated in cis-platin-resistant HepG2 hepatic cancer cells(HepG2-RC cells)compared with HepG2 cells.At least 63 NAD(P)H-dependent reductase/oxidases were upregulated in HepG2-RC cells at least twofold.Knockdown of AKR1Cs could increase cis-platin sensitivity in HepG2-RC cells about two-fold.Interestingly,the AKR1C inhibitor meclofenamic acid could increase the cis-platin sensitivity of HepG2-RC cells about eight-fold,indicating that the knockdown of AKR1Cs only partially reversed the resistance.Meanwhile,the amount of total NAD and the ratio of NADH/NAD^(+)were increased in HepG2-RC cells compared with HepG2 cells.The ratio of NADH/NAD^(+)in HepG2-RC cells was almost seven-fold higher than in HepG2 or HL-7702 cells.Increased NADH expression could be explained as a directly operating antioxidant to scavenge cis-platin-induced radicals.Conclusion:We report here that NADH,which is produced by NAD(P)Hdependent oxidoreductases,plays a key role in the AKR-associated cis-platin resistance of HepG2 hepatic cancer cells.
文摘Foxtail millet (Setaria italica L.) is a drought-tolerant millet crop of arid and semi-arid regions. Aldo-keto reductases (AKRs) are significant part of plant defence mechanism, having an ability to confer multiple stress tolerance. In this study, AKR1 gene expression was studied in roots and leaves of foxtail millet subjected to different regimes of PEG- and NaCl-stress for seven days. The quantitative Real-time PCR expression analysis in both root and leaves showed upregulation of AKR1 gene during PEG and salt stress. A close correlation exits between expression of AKR1 gene and the rate of lipid peroxidation along with the retardation of growth. Tissue-specific differences were found in the AKR1 gene expression to the stress intensities studied. The reduction in root and shoot growth under both stress conditions were dependent on stress severity. The level of lipid peroxidation as indicated by MDA formation was significantly increased in roots and leaves along with increased stress levels. Finally, these findings support the early responsive nature of AKR1 gene and seem to be associated at least in part with its ability to contribute in antioxidant defence related pathways which could provide a better protection against oxidative stress under stress conditions.
文摘OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bladder RT4 cells were used as tool cells and treated with AA-Ⅰ0,0.5,1.0 and 2μmol·L^(-1)for 24 h.Cell viability was detected using the CCK-8 method,and the half maximal inhibition concentration(IC_(50))was calculated using the CCK-8 method and the level of DNA adduct production was calculated.②hiHeps and RT4 cells were treated with AKR inhibitor luteotin(0,5,10 and 25μmol·L^(-1))+AA-Ⅰ0.2 and 1.0μmol·L^(-1)for 24 h,respectively,and the levels of DNA adducts were detected by a liquid chromatography-tandem mass spectrometer(LC-MS/MS).③hiHeps cells were incubated with 80 nmol·L^(-1)small interfering RNAs(si-AKRs)for 48 h and treated with AA-Ⅰ1.0μmol·L^(-1)for 24 h.Real-time qualitative PCR(RT-qPCR)method was used to detect the mRNA expression of AKRs gene and LC-MS/MS technology was used to investigate the effect of specific AKR gene knockdown on DNA adduct levels.④500 nmol·L^(-1)human AKR recombinant proteins AKR1A1 and AA-Ⅰwere incubated in vitro under anaerobic conditions and the formation of AA-Ⅰ-DNA adducts was detected.RESULTS①The IC_(50)of AA-Ⅰto hiHeps and RT4 cells was 1.9 and 0.42μmol·L^(-1),respec⁃tively.The level of DNA adduct production of the two cell lines was significantly different(P<0.01).②Luteolin≥5μmol·L^(-1)significantly inhibited the production of AA-Ⅰ-DNA adducts in both cells(P<0.05),and there was a concentration-dependent effect in hiHeps cells(P<0.01,R=0.84).③In the AKR family,the knockdown of AKR1A1 gene up to 80%inhibited the generation of AA-Ⅰ-DNA adducts by 30%-40%.④The AA-Ⅰ-DNA adducts were detected in the incubation of recombinant protein AKR1A1 and AA-Ⅰunder anaerobic conditions in vitro,approximately 1 adduct per 107 nucleotides.CONCLU⁃SION AKR1A1 is involved in AA-Ⅰbioactivation,providing a reference for elucidation of the carcino⁃genic mechanism of AA-Ⅰ.
基金This work was supported by grants from the National Natural Science Foundation of China (81302206 and 81560422), the Development and Reform Commission of Jilin Province (2013C026-2), and the Young Scholars Program of Norman Bethune Health Science Center of Jilin University (2013201012), the Health and Family Planning Commission of Jiangxi Province (20143207) and the Natural Science Foundation of Jiangxi Province of China (20151BAB205016 and 20132BAB205008).
文摘AIdo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were measured in prostate cancer cells. Aido-keto reductase family 1 member C3 mRNA and protein level were detected by RT-PCR and Western bolt analyses, respectively. Computer analysis with AutoDock Tools explored the molecular interaction of berberine with Aldo-keto reductase family 1 member C3. We found that berberine inhibited 22Rvl cells proliferation and decreased cellular testosterone formation in a dose-dependent manner. Berberine inhibited Aldo-keto reductase family I member C3 enzyme activity, rather than influenced mRNA and protein expressions. Molecular docking study demonstrated that berberine could enter the active center of Aldo-keto reductase family 1 member C3 and form π-π interaction with the amino-acid residue Phe306 and Phe311. In conclusion, the structural interaction of berberine with Aldo-keto reductase family 1 member C3 is attributed to the suppression of Aldo-keto reductase family I member C3 enzyme activity and the inhibition of 22Rvl prostate cancer cell growth by decreasing the intfacellular androgen synthesis. Our result provides the experimental basis for the design, research, and development of AKRlC3 inhibitors using berberine as the lead compound.
文摘The red-orange emitting phosphor YBO3:Eu3+was prepared by aldo-keto method and solid state diffusion. Aldo-keto method implied to decrease the processing time and heating temperature. The red-orange emitting phosphor was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as emission and excitation photoluminescence spectra re-corded at room temperature. The result of aldo-keto method showed that the phosphor YBO3:Eu3+could be obtained at 900 °C in less time^60%as compared to solid state diffusion (SSD). The material showed that the strongest emission peak at 595 nm under excitation at 233 nm was only due to forced magnetic dipole 5D0→7F1 transition of Eu3+ions. Significantly, the emission inten-sity of YBO3:Eu3+phosphor prepared by aldo-keto method was relatively higher as compared to that obtained by the solid state diffusion.
基金the National High-tech R&D Program of China(Grant No.2012AA020206)
文摘The involvement of aldo-keto reductases (AKRs) in tumorigenesis is widely reported, but their roles in the pathological process are not generally recognized due to inconsistent measure- ments of their expression. To overcome this problem, we simultaneously employed real-time PCR to examine gene expression and multiple reaction monitoring (MRM) of mass spectrometry (MS) to examine the protein expression of AKRs in five different hepatic cell lines. These include one rela- tively normal hepatic cell line, L-02, and four hepatocellular carcinoma (HCC) cell lines, HepG2, HUH7, BEL7402 and SMMC7721. The results of real-time PCR showed that expression of genes encoding the AKR1C family members rather than AKR1A and AKR1B was associated with tumor, and most of genes encoding AKRs were highly expressed in HUH7. Similar observations were obtained through MRM. Different from HUH7, the protein abundance of AKR1A and AKR1B was relatively consistent among the other four hepatic cell lines, while protein expression of AKR1C varied significantly compared to L-02. Therefore, we conclude that the abundant distri- bution of AKR 1C proteins is likely to be associated with liver tumorigenesis, and the AKR expres- sion status in HuH7 is completely different from other liver cancer cell lines. This study, for the first time, provided both overall and quantitative information regarding the expression of AKRs at both mRNA and protein levels in hepatic cell lines. Our observations put the previous use of AKRs as a biomarker into question since it is only consistent with our data from HUH7. Furthermore, the data presented herein demonstrated that quantitative evaluation and comparisons within a protein fam- ily at both mRNA and protein levels were feasible using current techniques.
基金This work was supported by the Shanghai Natural Science Foundation,China(No.19ZR1455400).
文摘Aldo-keto reductase 1C3(AKR1C3)is a potential target for the treatment of acute myeloid leukaemia and T-cell acute lymphoblastic leukaemia.In this study,pharmacophore models,molecular docking and virtual screening of target prediction were used to find a potential AKR1C3 inhibitor.Firstly,eight bacteriocin derivatives(Z1-Z8)were selected as training sets to construct 20 pharmacophore models.The best pharmacophore model MODEL_016 was obtained by Decoy test(the enrichment degree was 21.5117,and the fitting optimisation degree was 0.9668).Secondly,MODEL_016 was used for the virtual screening of ZINC database.Thirdly,the hit 83256 molecules were docked into the AKR1C3 protein.Compared to the total scores and interactions between compounds and protein,16532 candidate compounds with higher docking scores and interactions with important residues PHE306 and TRP227 were screened.Lastly,eight compounds(A1-A8)that had good absorption,distribution,metabolism,excretion and toxicity(ADMET)properties were obtained by target prediction.Compounds A3 and A7 with high total score and good target prediction results were selected for in vitro biological activity test,whose IC_(50) values were 268.3 and 88.94µmol/L,respectively.The results provide an important foundation for the discovery of novel AKR1C3 inhibitors.The research methods used in this study can also provide important references for the research and development of new drugs.
文摘目的初步探讨星形胶质细胞瘤细胞中的醛酮还原酶1A1(AKR1A1)在抗氧化应激和有毒醛代谢中的作用。方法通过LipofectamineTM RNAiMax以siRNA转染1321N1细胞,用Western blot法和qRT-PCR检测1321N1细胞中AKR1A1基因抑制水平。siRNA转染后的细胞经H2O2和4-羟基壬烯醛处理后使用MTT法检测细胞成活率;采用2',7'-二氯二氢荧光黄双乙酸酯(DCFH-DA)标记法检测敲减AKR1A1基因对H2O2诱导的1321N1细胞内活性氧(ROS)水平的影响。结果 Western blot法和qRT-PCR结果显示1321N1细胞经特异性siRNA转染后,AKR1A1基因的表达受到明显抑制(70%)。MTT法检测结果显示,siRNA-AKR1A1转染后的1321N1细胞在H2O2或4-羟基壬烯醛压力下的细胞成活率显著降低,而且敲减AKR1A1的1321细胞内H2O2诱导的ROS水平显著高于对照细胞。结论使用的特异性siRNA能有效抑制AKR1A1基因在1321N1星形细胞瘤细胞中表达,AKR1A1参与1321N1脑星形细胞瘤细胞中的4-羟基壬烯醛代谢,并且很可能参与调节脑细胞的抗氧化应激机制。