The response of mangrove ecosystems to the Asian monsoon in the future global warming can be understood by reconstructing the development of mangrove forests during the Holocene climatic optimum(HCO), using proxies ...The response of mangrove ecosystems to the Asian monsoon in the future global warming can be understood by reconstructing the development of mangrove forests during the Holocene climatic optimum(HCO), using proxies preserved in coastal sediments. The total organic matter in sediments of a segmented core, with calibrated age ranges between 5.6 and 7.7 cal. ka BP and corresponding to the HCO, from the Qinzhou Bay in Guangxi, China, is quantitatively partitioned into three end-members according to their sources: mangrove-derived, terrigenous,and marine phytoplanktonic, using a three-end-member model depicted by organic carbon isotope(δ13Corg) and the molar ratio of total organic carbon to total nitrogen(C/N). The percentage of mangrove-derived organic matter(MOM) contribution is used as a proxy for mangrove development. Three visible drops in MOM contribution occurred at ca. 7.3, ca. 6.9, and ca. 6.2 cal. ka BP, respectively, are recognized against a relatively stable and higher MOM contribution level, indicating that three distinct mangrove forest degradations occurred in the Qinzhou Bay during the HCO. The three mangrove forest degradations approximately correspond to the time of the strengthened/weakened Asian winter/summer monsoon. This indicates that even during a period favorable for the mangrove development, such as the HCO, climatic extremes, such as cold and dry events driven by the strengthened/weakened Asian winter/summer monsoon, can trigger the degradation of mangrove forests.展开更多
The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time,...The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.展开更多
Bituminous rocks in the Ozankoey (Ankara) field are different from those of the Paleocene- Eocene Mengen and Giineytepe (Bolu) regions in metal enrichment levels. Organic carbon (Corg) content of organic materia...Bituminous rocks in the Ozankoey (Ankara) field are different from those of the Paleocene- Eocene Mengen and Giineytepe (Bolu) regions in metal enrichment levels. Organic carbon (Corg) content of organic material-rich rocks in the Ozankoey (Ankara) field is 3.66-40.72% wt averaging 14.34%. The dominant organic materials are algae/amorphous accompanied by minor amount of herbaceous material (The dominant kerogen type is Type-I with a limited amount of Type-Ⅱ kerogen.). The bituminous rocks in the Ozankoey field are enriched in heavy metals such as Ni, Mn, As and Cr. In comparison with the average enrichment values of dements, Ni, Mn, As and Cr in bituminous shales of the Ozankoey field are as about 4.38, 14.93, 10.90 and 5.58 times as average values. The average concentrations of these heavy metals are also as high as 215× 10^-6, 828 × 10^-6, 58.54 × 10^-6, and 148 × 10^-6 respectively. In addition, sorption properties of day and organic materials are also important for metal enrichments in the bituminous shales.展开更多
Stable isotope analysis was used to determine the relative dietary importance of kelp-derived detritus to plankton and benthic organisms along a gradient of kelp abundance driven by recovering sea otter populations al...Stable isotope analysis was used to determine the relative dietary importance of kelp-derived detritus to plankton and benthic organisms along a gradient of kelp abundance driven by recovering sea otter populations along the west coast of Vancouver Island (WCVI), Canada. The study used region-specific kelp isotope values (<i>δ</i><sup>13</sup>C and <i>δ</i><sup>15</sup>N) and season-specific phytoplankton isotope values to model dietary contributions of kelp-derived detritus (KDD). In general, KDD contributions were moderate to high in most plankton size fractions during the summer and decreased during the winter, particularly in the kelp sparse region. Hypothesized regional and spatial (distance from the coast) differences in kelp detritus contributions to zooplankton w<span style="white-space:normal;"><span style="font-family:;" "="">ere</span></span><span style="white-space:normal;"><span style="font-family:;" "=""> not evident. Modeled estimates of the KDD contribution to benthic invertebrates w</span></span><span style="white-space:normal;"><span style="font-family:;" "="">ere</span></span><span style="white-space:normal;"><span style="font-family:;" "=""> high (>40%) and independent of the organism size, among regions and between seasons, with the exception of <i>Astraea gibberosa</i> in the kelp abundant region. Local oceanography, natural kelp isotope signature variation, and significant overlap between kelps’ and blooming phytoplankton isotope values led to a large uncertainty in the assessed KDD contributions in benthic organisms. These results highlighted the importance of the KDD as a widespread and stable year-round food source in coastal kelp populated regions.</span></span>展开更多
This work aims at characterizing organic matter produced by an alga Euglena gracil~ and a cyanobacteria Microcystis aeruginosa and assessing the evolution of its characteristics during growth. A culture medium was opt...This work aims at characterizing organic matter produced by an alga Euglena gracil~ and a cyanobacteria Microcystis aeruginosa and assessing the evolution of its characteristics during growth. A culture medium was optimized. The species growth phases were monitored using both visible spectrophotometry and flow cytometry cell counting. Organic matter fractionation according to hydrophobicity and specific UV absorbance (SUVA) index were used to specifically characterize the produced algal organic matter (AOM). The AOM characteristics were both growth phase and species dependent. However, a similar evolution was observed. The hydrophilic fraction (HPI) was the major fraction whatever the growth phases and was almost the only one produced during lag and exponential phases. It represented around 75% of AOM during exponential phase and then decreased when the stationary phase appeared. It represented 46% and 60% of the AOM during late decline phase for the cyanobacteria and the alga respectively. The hydrophobic (HPO) and transphilic (TPH) fractions started to appear from the beginning of the stationary phase with more hydrophobic compounds coming from intracellular organic material of dying cells. HPO and TPH percentages still increased during the decline phase probably because of two additional processes: photo-dissolution and leaching of particulate organic matter from cells fragments. A comparison of AOM during late decline phase and natural organic matter (NOM) from Glane River (France) underlined that AOM was more fiydrophilic and presented a lower SUVA for each fractions than NOM. However, the difference between NOM and AOM hydrophobicity narrowed during decline phase.展开更多
THE previous simulating experiments show that many algae can greatly accumulate goldfrom solution under some conditions. Some other experiments further indicate that organ-ic matter and crude oil can also play an impo...THE previous simulating experiments show that many algae can greatly accumulate goldfrom solution under some conditions. Some other experiments further indicate that organ-ic matter and crude oil can also play an important role in gold geochemistry processes such asleaching, migration, reduction and precipitation. However, these biometallogeneses are展开更多
As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD...As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality.In this study,we tested the hypothesis that the dissolved organic matter(DOM) derived from the planktonic algae causes the rising levels of COD_(Mn) along the middle route by monitoring data on water quality(2015-2019,monthly resolution).The results showed that algal density in the main channel increased along the channel and was significantly correlated with COD_(Mn)(p <0.01).Five fluorescent components of DOM,including tyrosine-like(14.85%),tryptophan-like(22.48%),microbial byproduct-like(26.34%),fulvic acid-like(11.41%),and humic acid-like(24.92%) components,were detected.The level of tyrosine-like components increased along the channel and was significantly correlated with algal density(p<0.01),indicating that algae significantly changed the level of DOM in the channel.Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in COD_(Mn).Therefore,controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.展开更多
A brief discussion is given to the thermal-induced polycondensation of soluble organic matter (SOM) in coal during lower maturation stage, based on laboratory simulation on hydrocarbon generation from coal and on corr...A brief discussion is given to the thermal-induced polycondensation of soluble organic matter (SOM) in coal during lower maturation stage, based on laboratory simulation on hydrocarbon generation from coal and on correlation with natural maturation of coal. An essential relationship between the retrogressive variation of SOM and thermal-induced polycondensation during the lower maturation stage has been established.展开更多
基金The National Basic Research Program (973 Program) of China under contract No.2010CB951203the National Natural Science Foundation of China under contract Nos 41376075,41576061 and 41206057
文摘The response of mangrove ecosystems to the Asian monsoon in the future global warming can be understood by reconstructing the development of mangrove forests during the Holocene climatic optimum(HCO), using proxies preserved in coastal sediments. The total organic matter in sediments of a segmented core, with calibrated age ranges between 5.6 and 7.7 cal. ka BP and corresponding to the HCO, from the Qinzhou Bay in Guangxi, China, is quantitatively partitioned into three end-members according to their sources: mangrove-derived, terrigenous,and marine phytoplanktonic, using a three-end-member model depicted by organic carbon isotope(δ13Corg) and the molar ratio of total organic carbon to total nitrogen(C/N). The percentage of mangrove-derived organic matter(MOM) contribution is used as a proxy for mangrove development. Three visible drops in MOM contribution occurred at ca. 7.3, ca. 6.9, and ca. 6.2 cal. ka BP, respectively, are recognized against a relatively stable and higher MOM contribution level, indicating that three distinct mangrove forest degradations occurred in the Qinzhou Bay during the HCO. The three mangrove forest degradations approximately correspond to the time of the strengthened/weakened Asian winter/summer monsoon. This indicates that even during a period favorable for the mangrove development, such as the HCO, climatic extremes, such as cold and dry events driven by the strengthened/weakened Asian winter/summer monsoon, can trigger the degradation of mangrove forests.
基金Project(2008ZX07421-002) supported by the Key National Science and Technology Project of ChinaProject(50638020) supported by the National Natural Science Foundation of China
文摘The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.
文摘Bituminous rocks in the Ozankoey (Ankara) field are different from those of the Paleocene- Eocene Mengen and Giineytepe (Bolu) regions in metal enrichment levels. Organic carbon (Corg) content of organic material-rich rocks in the Ozankoey (Ankara) field is 3.66-40.72% wt averaging 14.34%. The dominant organic materials are algae/amorphous accompanied by minor amount of herbaceous material (The dominant kerogen type is Type-I with a limited amount of Type-Ⅱ kerogen.). The bituminous rocks in the Ozankoey field are enriched in heavy metals such as Ni, Mn, As and Cr. In comparison with the average enrichment values of dements, Ni, Mn, As and Cr in bituminous shales of the Ozankoey field are as about 4.38, 14.93, 10.90 and 5.58 times as average values. The average concentrations of these heavy metals are also as high as 215× 10^-6, 828 × 10^-6, 58.54 × 10^-6, and 148 × 10^-6 respectively. In addition, sorption properties of day and organic materials are also important for metal enrichments in the bituminous shales.
文摘Stable isotope analysis was used to determine the relative dietary importance of kelp-derived detritus to plankton and benthic organisms along a gradient of kelp abundance driven by recovering sea otter populations along the west coast of Vancouver Island (WCVI), Canada. The study used region-specific kelp isotope values (<i>δ</i><sup>13</sup>C and <i>δ</i><sup>15</sup>N) and season-specific phytoplankton isotope values to model dietary contributions of kelp-derived detritus (KDD). In general, KDD contributions were moderate to high in most plankton size fractions during the summer and decreased during the winter, particularly in the kelp sparse region. Hypothesized regional and spatial (distance from the coast) differences in kelp detritus contributions to zooplankton w<span style="white-space:normal;"><span style="font-family:;" "="">ere</span></span><span style="white-space:normal;"><span style="font-family:;" "=""> not evident. Modeled estimates of the KDD contribution to benthic invertebrates w</span></span><span style="white-space:normal;"><span style="font-family:;" "="">ere</span></span><span style="white-space:normal;"><span style="font-family:;" "=""> high (>40%) and independent of the organism size, among regions and between seasons, with the exception of <i>Astraea gibberosa</i> in the kelp abundant region. Local oceanography, natural kelp isotope signature variation, and significant overlap between kelps’ and blooming phytoplankton isotope values led to a large uncertainty in the assessed KDD contributions in benthic organisms. These results highlighted the importance of the KDD as a widespread and stable year-round food source in coastal kelp populated regions.</span></span>
基金the FEDER (European Found forRegional Development)the Regional Council of Limousin for their financial supportnt
文摘This work aims at characterizing organic matter produced by an alga Euglena gracil~ and a cyanobacteria Microcystis aeruginosa and assessing the evolution of its characteristics during growth. A culture medium was optimized. The species growth phases were monitored using both visible spectrophotometry and flow cytometry cell counting. Organic matter fractionation according to hydrophobicity and specific UV absorbance (SUVA) index were used to specifically characterize the produced algal organic matter (AOM). The AOM characteristics were both growth phase and species dependent. However, a similar evolution was observed. The hydrophilic fraction (HPI) was the major fraction whatever the growth phases and was almost the only one produced during lag and exponential phases. It represented around 75% of AOM during exponential phase and then decreased when the stationary phase appeared. It represented 46% and 60% of the AOM during late decline phase for the cyanobacteria and the alga respectively. The hydrophobic (HPO) and transphilic (TPH) fractions started to appear from the beginning of the stationary phase with more hydrophobic compounds coming from intracellular organic material of dying cells. HPO and TPH percentages still increased during the decline phase probably because of two additional processes: photo-dissolution and leaching of particulate organic matter from cells fragments. A comparison of AOM during late decline phase and natural organic matter (NOM) from Glane River (France) underlined that AOM was more fiydrophilic and presented a lower SUVA for each fractions than NOM. However, the difference between NOM and AOM hydrophobicity narrowed during decline phase.
文摘THE previous simulating experiments show that many algae can greatly accumulate goldfrom solution under some conditions. Some other experiments further indicate that organ-ic matter and crude oil can also play an important role in gold geochemistry processes such asleaching, migration, reduction and precipitation. However, these biometallogeneses are
基金This research was financially supported by the National Natural Science Foundation of China(No.U2040210)the National Key R&D Program(Nos.2019YFC0408904,2019YFC0408901).
文摘As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality.In this study,we tested the hypothesis that the dissolved organic matter(DOM) derived from the planktonic algae causes the rising levels of COD_(Mn) along the middle route by monitoring data on water quality(2015-2019,monthly resolution).The results showed that algal density in the main channel increased along the channel and was significantly correlated with COD_(Mn)(p <0.01).Five fluorescent components of DOM,including tyrosine-like(14.85%),tryptophan-like(22.48%),microbial byproduct-like(26.34%),fulvic acid-like(11.41%),and humic acid-like(24.92%) components,were detected.The level of tyrosine-like components increased along the channel and was significantly correlated with algal density(p<0.01),indicating that algae significantly changed the level of DOM in the channel.Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in COD_(Mn).Therefore,controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.
文摘A brief discussion is given to the thermal-induced polycondensation of soluble organic matter (SOM) in coal during lower maturation stage, based on laboratory simulation on hydrocarbon generation from coal and on correlation with natural maturation of coal. An essential relationship between the retrogressive variation of SOM and thermal-induced polycondensation during the lower maturation stage has been established.