蓝藻水华的暴发严重影响了水生生物以及饮用水的安全,溶藻菌能够以直接或间接的方式对蓝藻水华起到防治作用.以中国知网和Web of Science两个数据库中2002至2022年蓝藻溶藻菌及其相关领域的文献为数据源,运用CiteSpace软件构建关于发文...蓝藻水华的暴发严重影响了水生生物以及饮用水的安全,溶藻菌能够以直接或间接的方式对蓝藻水华起到防治作用.以中国知网和Web of Science两个数据库中2002至2022年蓝藻溶藻菌及其相关领域的文献为数据源,运用CiteSpace软件构建关于发文作者、国家、机构以及关键词的知识图谱,分析该领域的研究热点以及未来研究趋势.结果表明:(1)近年来关于蓝藻溶藻菌方面的发文量一直呈上升趋势,国内主要以中国科学院、西南大学等单位为主,国外主要以韩国汉阳大学等单位为主;(2)2022年以前研究者主要关注蓝藻溶藻菌的分离鉴定、菌藻关系、放线菌、氧化应激、16S rRNA、溶藻机制、微生物群体、浮游植物、溶藻物质成分、培养条件优化等方面,2022年以后,蓝藻溶藻菌的分离鉴定、蓝藻水华的生物治理、氧化应激反应、溶藻分子机制、群体感应(quorum sensing,QS)、藻毒素降解等方面可能会被持续关注,而关于溶藻物质和相关编码基因的深层挖掘等可能成为潜在的关注热点.展开更多
In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between al...In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between algicidal bacteria and algae. Firstly, mathematical work mainly provided some threshold conditions to ensure the occurrence of transcritical bifurcation and saddle-node bifurcation, which could provide certain theoretical support for selecting key ecological environmental factors and numerical simulations. Secondly, the numerical simulation work dynamically displayed the evolution process of the bifurcation dynamic behavior of the model (2.1) and the growth coexistence mode of algae and algicidal bacteria. Finally, it was worth summarizing that intrinsic growth rate and combined capture effort of algae population had a strong influence on the dynamic behavior of the model (2.1). Furthermore, it must also be noted that transcritical bifurcation and saddle-node bifurcation were the inherent driving forces behind the formation of steady-state growth coexistence mode between algicidal bacteria and algae. In summary, it was hoped that the results of this study would contribute to accelerating the study of the interaction mechanism between algicidal bacteria and algae.展开更多
文摘蓝藻水华的暴发严重影响了水生生物以及饮用水的安全,溶藻菌能够以直接或间接的方式对蓝藻水华起到防治作用.以中国知网和Web of Science两个数据库中2002至2022年蓝藻溶藻菌及其相关领域的文献为数据源,运用CiteSpace软件构建关于发文作者、国家、机构以及关键词的知识图谱,分析该领域的研究热点以及未来研究趋势.结果表明:(1)近年来关于蓝藻溶藻菌方面的发文量一直呈上升趋势,国内主要以中国科学院、西南大学等单位为主,国外主要以韩国汉阳大学等单位为主;(2)2022年以前研究者主要关注蓝藻溶藻菌的分离鉴定、菌藻关系、放线菌、氧化应激、16S rRNA、溶藻机制、微生物群体、浮游植物、溶藻物质成分、培养条件优化等方面,2022年以后,蓝藻溶藻菌的分离鉴定、蓝藻水华的生物治理、氧化应激反应、溶藻分子机制、群体感应(quorum sensing,QS)、藻毒素降解等方面可能会被持续关注,而关于溶藻物质和相关编码基因的深层挖掘等可能成为潜在的关注热点.
文摘In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between algicidal bacteria and algae. Firstly, mathematical work mainly provided some threshold conditions to ensure the occurrence of transcritical bifurcation and saddle-node bifurcation, which could provide certain theoretical support for selecting key ecological environmental factors and numerical simulations. Secondly, the numerical simulation work dynamically displayed the evolution process of the bifurcation dynamic behavior of the model (2.1) and the growth coexistence mode of algae and algicidal bacteria. Finally, it was worth summarizing that intrinsic growth rate and combined capture effort of algae population had a strong influence on the dynamic behavior of the model (2.1). Furthermore, it must also be noted that transcritical bifurcation and saddle-node bifurcation were the inherent driving forces behind the formation of steady-state growth coexistence mode between algicidal bacteria and algae. In summary, it was hoped that the results of this study would contribute to accelerating the study of the interaction mechanism between algicidal bacteria and algae.