We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1]. It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra ass...We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1]. It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra associated with the U(N) Lie algebra. There is no ghost related to the Lorentzian signature in this model. It is invariant under 64 supersymmetry transformations although the supersymmetry algebra does not close. From the model, we derive the BFSS matrix theory and the IIB matrix model in a large N limit by taking appropriate vacua.展开更多
We review on Zariski 3-algebra model of M-theory. The model is obtained by Zariski quantization of a semi-light-cone supermembrane action. The model has manifest N=1 supersymmetry in eleven dimensions and its relation...We review on Zariski 3-algebra model of M-theory. The model is obtained by Zariski quantization of a semi-light-cone supermembrane action. The model has manifest N=1 supersymmetry in eleven dimensions and its relation to the supermembrane action is clear.展开更多
Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is appl...Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.展开更多
In accordance to the anisotropic feature of turbulent flow, ananisotropic algebraic stress model is adopted to predict theturbulent flow field and turbulent characteristics generated by aRushton disc turbine with the ...In accordance to the anisotropic feature of turbulent flow, ananisotropic algebraic stress model is adopted to predict theturbulent flow field and turbulent characteristics generated by aRushton disc turbine with the improved inner-outer iterativeprocedure. The predicted turbulent flow is compared with experimentaldata and the simulation by the standard k-ε turbulence model. Theanisotropic algebraic stress model is found to give better predictionthan the standard k-ε turbulence model. The predicted turbulent flowfield is in accordance to experimental data and the trend of theturbulence intensity can be effectively reflected in the simulation.展开更多
Granular computing is a very hot research field in recent years. In our previous work an algebraic quotient space model was proposed,where the quotient structure could not be deduced if the granulation was based on an...Granular computing is a very hot research field in recent years. In our previous work an algebraic quotient space model was proposed,where the quotient structure could not be deduced if the granulation was based on an equivalence relation. In this paper,definitions were given and formulas of the lower quotient congruence and upper quotient congruence were calculated to roughly represent the quotient structure. Then the accuracy and roughness were defined to measure the quotient structure in quantification. Finally,a numerical example was given to demonstrate that the rough representation and measuring methods are efficient and applicable. The work has greatly enriched the algebraic quotient space model and granular computing theory.展开更多
An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant ...An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant flux tensor into a two-dimensional and a three-dimensional component. The five-term basis was formed with the two-dimensional component of the buoyant flux tensor. As such, the derived EASM is limited to two-dimensional flows only. In this paper, a more general approach using a seven-term representation without partitioning the buoyant flux tensor is used to derive an EASM valid for two- and three-dimensional turbulent buoyant flows. Consequently, the basis tensors are formed with the fully three-dimensional buoyant flux tensor. The derived EASM has the two-dimensional flow as a special case. The matrices and the representation coefficients are further simplified using a four-term representation. When this four-term representation model is applied to calculate two-dimensional homogeneous buoyant flows, the results are essentially identical with those obtained previously using the two-dimensional component of the buoyant flux tensor. Therefore, the present approach leads to a more general EASM formulation that is equally valid for two- and three-dimensional turbulent buoyant flows.展开更多
Let F be the field algebra of G -spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G . The paper builds a correspondence between D(H) and th...Let F be the field algebra of G -spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G . The paper builds a correspondence between D(H) and the D(H) -invariant sub- C * -algebra A H in F, and proves that the correspondence is strictly monotonic.展开更多
In this paper we proposed an AMH Supply Chain model to obtain optimal solutions for Two-, Three- and Four-Stage for deterministic models. Besides deriving its algebraic solutions, a simple searching method is successf...In this paper we proposed an AMH Supply Chain model to obtain optimal solutions for Two-, Three- and Four-Stage for deterministic models. Besides deriving its algebraic solutions, a simple searching method is successfully applied in obtaining optimal total costs and its integer multipliers. Our model has shown promising results in comparison to Equal Cycle Time and other existing ones. The tests focused on obtaining optimal total annual costs and other related details of Two-, Three- and Four-Stage for deterministic models. The results are run under Visual Basic Programming platform using Intel? CoreTM2 Duo T6500 Processor.展开更多
Algebraic attack was applied to attack Filter-Combintr model keystreamgenerators. We proposed the technique of function composition to improve the model, and the improvedmodel can resist the algebraic attack. A new cr...Algebraic attack was applied to attack Filter-Combintr model keystreamgenerators. We proposed the technique of function composition to improve the model, and the improvedmodel can resist the algebraic attack. A new criterion for designing Filter-Combiner model was alsoproposed: the total length I. of Linear Finite State Machines used in the model should be largeenough and the degree d of Filter-Combiner function should be approximate [L/2].展开更多
The proposed cyclic universes model based on the split division algebras accounts for the inflation, the Big Bang, gravity, dark energy, dark matter, the standard model, and the masses of all elementary particles. The...The proposed cyclic universes model based on the split division algebras accounts for the inflation, the Big Bang, gravity, dark energy, dark matter, the standard model, and the masses of all elementary particles. The split algebras (complex quaternion and complex octonion) as the Furey model generate the fixed spacetime dimension number for the observable universe with the fixed 4-dimensional spacetime (4D) standard model particles and the oscillating spacetime dimension number for the oscillating universes (hidden or dark energy) with the oscillation between 11D and 11D through 10D and between 10D and 10D through 4D. 11D has the lowest rest mass, the highest speed of light, and the highest vacuum energy, while 4D has the highest rest mass, the lowest (observed) speed of light, and zero vacuum energy. In the cyclic universes model, the universes start with the positive-energy and the negative-energy 11D membrane-antimembrane dual universes from the zero-energy inter-universal void, and are followed by the transformation of the 11D membrane-antimembrane dual universes into the 10D string-antistring dual universes and the external dual gravities as in the Randall-Sundrum model, resulting in the four equal and separate universes consisting of the positive-energy 10D universe, the positive-energy external gravity, the negative-energy 10D universe, and the negative-energy external gravity. Under the fixed spacetime dimension number, the positive-energy 10D universe is transformed into 4D standard model particles through the inflation and the Big Bang. Dark matter is the right-handed neutrino, exactly five times of baryonic matter in total mass in the universe. Under the oscillating spacetime dimension number, the other three universes oscillate between 10D and 10D through 4D, resulting in the hidden universes when D > 4 and dark energy (the maximum dark energy = 3/4 = 75%) when D = 4. Eventually, all four universes return to the 10D universes.展开更多
The shallow-water equations and pollutant convective-diffusive equation are transformed into curvilinear coordinate system. The anisotropic algebraic-stress turbulent model is introduced to simulate the turbulence ite...The shallow-water equations and pollutant convective-diffusive equation are transformed into curvilinear coordinate system. The anisotropic algebraic-stress turbulent model is introduced to simulate the turbulence items, and algebraic-stress turbulent model of planar 2-D pollutant convective-diffusive in curvilinear coordinates is build. The meandering channel with measured data of concentration in lab is adopted to validate the model, and the distribution figure of pollutant concentration field calculated through this model and that of the k-ε model, which show the model is superior to k-ε turbulent model in dealing with anisotropy character of flow.展开更多
文摘We examine a natural supersymmetric extension of the bosonic covariant 3-algebra model for M-theory proposed in [1]. It possesses manifest SO(1,10) symmetry and is constructed based on the Lorentzian Lie 3-algebra associated with the U(N) Lie algebra. There is no ghost related to the Lorentzian signature in this model. It is invariant under 64 supersymmetry transformations although the supersymmetry algebra does not close. From the model, we derive the BFSS matrix theory and the IIB matrix model in a large N limit by taking appropriate vacua.
文摘We review on Zariski 3-algebra model of M-theory. The model is obtained by Zariski quantization of a semi-light-cone supermembrane action. The model has manifest N=1 supersymmetry in eleven dimensions and its relation to the supermembrane action is clear.
文摘Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.
基金the National Natural Science Foundation of China (No. 29792074).
文摘In accordance to the anisotropic feature of turbulent flow, ananisotropic algebraic stress model is adopted to predict theturbulent flow field and turbulent characteristics generated by aRushton disc turbine with the improved inner-outer iterativeprocedure. The predicted turbulent flow is compared with experimentaldata and the simulation by the standard k-ε turbulence model. Theanisotropic algebraic stress model is found to give better predictionthan the standard k-ε turbulence model. The predicted turbulent flowfield is in accordance to experimental data and the trend of theturbulence intensity can be effectively reflected in the simulation.
基金Supported by the National Natural Science Foundation of China(No.61772031)the Special Energy Saving Foundation of Changsha,Hunan Province in 2017
文摘Granular computing is a very hot research field in recent years. In our previous work an algebraic quotient space model was proposed,where the quotient structure could not be deduced if the granulation was based on an equivalence relation. In this paper,definitions were given and formulas of the lower quotient congruence and upper quotient congruence were calculated to roughly represent the quotient structure. Then the accuracy and roughness were defined to measure the quotient structure in quantification. Finally,a numerical example was given to demonstrate that the rough representation and measuring methods are efficient and applicable. The work has greatly enriched the algebraic quotient space model and granular computing theory.
文摘An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant flux tensor into a two-dimensional and a three-dimensional component. The five-term basis was formed with the two-dimensional component of the buoyant flux tensor. As such, the derived EASM is limited to two-dimensional flows only. In this paper, a more general approach using a seven-term representation without partitioning the buoyant flux tensor is used to derive an EASM valid for two- and three-dimensional turbulent buoyant flows. Consequently, the basis tensors are formed with the fully three-dimensional buoyant flux tensor. The derived EASM has the two-dimensional flow as a special case. The matrices and the representation coefficients are further simplified using a four-term representation. When this four-term representation model is applied to calculate two-dimensional homogeneous buoyant flows, the results are essentially identical with those obtained previously using the two-dimensional component of the buoyant flux tensor. Therefore, the present approach leads to a more general EASM formulation that is equally valid for two- and three-dimensional turbulent buoyant flows.
文摘Let F be the field algebra of G -spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G . The paper builds a correspondence between D(H) and the D(H) -invariant sub- C * -algebra A H in F, and proves that the correspondence is strictly monotonic.
文摘In this paper we proposed an AMH Supply Chain model to obtain optimal solutions for Two-, Three- and Four-Stage for deterministic models. Besides deriving its algebraic solutions, a simple searching method is successfully applied in obtaining optimal total costs and its integer multipliers. Our model has shown promising results in comparison to Equal Cycle Time and other existing ones. The tests focused on obtaining optimal total annual costs and other related details of Two-, Three- and Four-Stage for deterministic models. The results are run under Visual Basic Programming platform using Intel? CoreTM2 Duo T6500 Processor.
文摘Algebraic attack was applied to attack Filter-Combintr model keystreamgenerators. We proposed the technique of function composition to improve the model, and the improvedmodel can resist the algebraic attack. A new criterion for designing Filter-Combiner model was alsoproposed: the total length I. of Linear Finite State Machines used in the model should be largeenough and the degree d of Filter-Combiner function should be approximate [L/2].
文摘The proposed cyclic universes model based on the split division algebras accounts for the inflation, the Big Bang, gravity, dark energy, dark matter, the standard model, and the masses of all elementary particles. The split algebras (complex quaternion and complex octonion) as the Furey model generate the fixed spacetime dimension number for the observable universe with the fixed 4-dimensional spacetime (4D) standard model particles and the oscillating spacetime dimension number for the oscillating universes (hidden or dark energy) with the oscillation between 11D and 11D through 10D and between 10D and 10D through 4D. 11D has the lowest rest mass, the highest speed of light, and the highest vacuum energy, while 4D has the highest rest mass, the lowest (observed) speed of light, and zero vacuum energy. In the cyclic universes model, the universes start with the positive-energy and the negative-energy 11D membrane-antimembrane dual universes from the zero-energy inter-universal void, and are followed by the transformation of the 11D membrane-antimembrane dual universes into the 10D string-antistring dual universes and the external dual gravities as in the Randall-Sundrum model, resulting in the four equal and separate universes consisting of the positive-energy 10D universe, the positive-energy external gravity, the negative-energy 10D universe, and the negative-energy external gravity. Under the fixed spacetime dimension number, the positive-energy 10D universe is transformed into 4D standard model particles through the inflation and the Big Bang. Dark matter is the right-handed neutrino, exactly five times of baryonic matter in total mass in the universe. Under the oscillating spacetime dimension number, the other three universes oscillate between 10D and 10D through 4D, resulting in the hidden universes when D > 4 and dark energy (the maximum dark energy = 3/4 = 75%) when D = 4. Eventually, all four universes return to the 10D universes.
文摘The shallow-water equations and pollutant convective-diffusive equation are transformed into curvilinear coordinate system. The anisotropic algebraic-stress turbulent model is introduced to simulate the turbulence items, and algebraic-stress turbulent model of planar 2-D pollutant convective-diffusive in curvilinear coordinates is build. The meandering channel with measured data of concentration in lab is adopted to validate the model, and the distribution figure of pollutant concentration field calculated through this model and that of the k-ε model, which show the model is superior to k-ε turbulent model in dealing with anisotropy character of flow.