In this paper we deal with the problem of uniqueness of meromorphic functions with two deficient values and obtain a result which is an improvement of that of F. Gross and Yi Hougxun.
The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 ...The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.展开更多
We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
By using the definition of Hausdorff distance, we prove some normality criteria for families of meromorphic algebroid functions. Some examples are given to complement the theory in this article.
In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and ...In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and their derivatives, we obtain some uniqueness theorems of algebroid functions sharing values with their derivatives, which extend 3 IM shared values theorem of nonconstant meromorphic functions and their derivatives obtained by Mues-Steinmetz and Gundersen.展开更多
The author proves that if f : C → C^n is a transcendental vector valued mero-morphic function of finite order and assume, This result extends the related results for meromorphic function by Singh and Kulkarni.
In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article i...In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].展开更多
This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods...We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.展开更多
Let E(a;f) be the set of a-points of a meromorphic function f(z) counting multiplicities. We prove that if a transcendental meromorphic function f(z) of hyper order strictly less than 1 and its nth exact difference Δ...Let E(a;f) be the set of a-points of a meromorphic function f(z) counting multiplicities. We prove that if a transcendental meromorphic function f(z) of hyper order strictly less than 1 and its nth exact difference Δnc f(z) satisfy E(1;f)= E(1;Δnc f), E(0;f) E(0;Δnc f) and E(1;f) E(1;Δnc f), then Δnc f(z) f(z). This result improves a more recent theorem due to Gao et al.(Gao Z, Kornonen R, Zhang J, Zhang Y. Uniqueness of meromorphic functions sharing values with their nth order exact differences. Analysis Math., 2018, https://doi.org/10.1007/s10476- 018-0605-2) by using a simple method.展开更多
In this paper, by means of the definition of Borel exceptional value method, another exceptional value of meromorphic function which is a T exceptional value is defined by linking the concept of T direction. And we co...In this paper, by means of the definition of Borel exceptional value method, another exceptional value of meromorphic function which is a T exceptional value is defined by linking the concept of T direction. And we construct a meromorphic function with zero as Borel exceptional value, but not as T exceptional value; and another meromorphic function with zero as T exceptional value, but not as Borel exceptional value.展开更多
In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one...In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one finite nonzero value.展开更多
In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively...In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively, or share four values partially, then they are identical under an appropriate deficiency assumption.展开更多
We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for s...We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for some positive number a.展开更多
In this paper we derive the fundamental inequality of the theorem of meromorphic functions. It extends some results of Yi Hong-xun et al. As one of its application, we then study the value distribution of f^(k)f^n-c...In this paper we derive the fundamental inequality of the theorem of meromorphic functions. It extends some results of Yi Hong-xun et al. As one of its application, we then study the value distribution of f^(k)f^n-c(z).展开更多
In this article,we use Zalcman Lemma to investigate the normal family of meromorphic functions concerning shared values,which improves some earlier related results.
In this paper, we shall study the uniqueness problems of meromorphic functions of differential polynomials sharing two values IM. Our results improve or generalize many previous results on value sharing of meromorphic...In this paper, we shall study the uniqueness problems of meromorphic functions of differential polynomials sharing two values IM. Our results improve or generalize many previous results on value sharing of meromorphic functions.展开更多
In this paper, we prove a result on the uniqueness of meromorphic functions sharing three values counting multiplicity and improve a result obtained by Xiaomin Li and Hongxun Yi.
Let f(z) be a meromorphic function and ψ be the differential polynomial of f which satisfies the condition of -↑N(r, f)+-↑N (r, 1/f) = S(r, f). We obtain several results about the zero point of the ψ and ...Let f(z) be a meromorphic function and ψ be the differential polynomial of f which satisfies the condition of -↑N(r, f)+-↑N (r, 1/f) = S(r, f). We obtain several results about the zero point of the ψ and those results extend and improve the results of Yang and Yi in this paper.展开更多
Aim To study the value distribution of meromorphic functions in angular domains, the deficiency, the deficient value, the Nevanlinna direction and other singular directions. Methods A fundamental inequality of Nevan...Aim To study the value distribution of meromorphic functions in angular domains, the deficiency, the deficient value, the Nevanlinna direction and other singular directions. Methods A fundamental inequality of Nevanlinna characteristic functions in the angular domain was used, which is similar with the Nevanlinna secondary fundamental theorem. Results The deficiency and deficient value of meromorphic functions about an angular domain and a direction were defined. The definition of Nevanlinna direction was improved. Conclusion For a family of meromorphic functions, it is proved that the number of deficient values is at most countable and the sum of deficiencies isnt greater than 2. The existence of the Nevanlinna direction is obtained. The existence of Borel and Julia directions and the relation between them are found.展开更多
文摘In this paper we deal with the problem of uniqueness of meromorphic functions with two deficient values and obtain a result which is an improvement of that of F. Gross and Yi Hougxun.
文摘The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.
基金supported by Nature Science Foundation of China(11461070),supported by Nature Science Foundation of China(11271227)PCSIRT(IRT1264)
文摘We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.
基金Sponsored by the NSFC (10871076)the RFDP (20050574002)
文摘By using the definition of Hausdorff distance, we prove some normality criteria for families of meromorphic algebroid functions. Some examples are given to complement the theory in this article.
基金supported by NSF of China (11209119511171119+1 种基金11101096)the STP of Education Department of Jiangxi Province,China (GJJ12179)
文摘In this paper, we define the shared value of an algebroid function and its derivative on its Riemann surface. By considering the relationship between the shared values and the branch points of algebroid functions and their derivatives, we obtain some uniqueness theorems of algebroid functions sharing values with their derivatives, which extend 3 IM shared values theorem of nonconstant meromorphic functions and their derivatives obtained by Mues-Steinmetz and Gundersen.
基金supported by the National Natural Science Foundation of China(11201395)supported by the Science Foundation of Educational Commission of Hubei Province(Q20132801)
文摘The author proves that if f : C → C^n is a transcendental vector valued mero-morphic function of finite order and assume, This result extends the related results for meromorphic function by Singh and Kulkarni.
基金supported by the NSFC(11171184)the NSF of Shandong Province,China(Z2008A01)
文摘In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].
基金Supported by the NSF of China(10371065)Supported by the NSF of Zhejiang Province (M103006)
文摘This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
文摘We studied the normality conditions in families of meromorphic functions, improved the results of Fang and Zalcman [Fang ML, Zalcman L, Normal families and shared values of meromorphic functions, Computational Methods and Function Theory, 2001, 1 (1): 289-299], and generalized two new normality criterions. Let F be a family of meromorphic functions in a domain D, a a non-zero finite complex number, B a positive real number, and k and m two positive integers satisfying m〉2k+4. If every function denoted by f belonging to F has only zeros with multiplicity at least k and satisfies f^m(z)f^(k)(Z)=α→ |^f(k)(z)| ≤B or f^m(z)f^(k)(z)=α→|f(z)| ≥, then F is normal in D.
基金The NSF (11801291) of China,the NSF (2018J01424) of Fujian Province
文摘Let E(a;f) be the set of a-points of a meromorphic function f(z) counting multiplicities. We prove that if a transcendental meromorphic function f(z) of hyper order strictly less than 1 and its nth exact difference Δnc f(z) satisfy E(1;f)= E(1;Δnc f), E(0;f) E(0;Δnc f) and E(1;f) E(1;Δnc f), then Δnc f(z) f(z). This result improves a more recent theorem due to Gao et al.(Gao Z, Kornonen R, Zhang J, Zhang Y. Uniqueness of meromorphic functions sharing values with their nth order exact differences. Analysis Math., 2018, https://doi.org/10.1007/s10476- 018-0605-2) by using a simple method.
基金supported by the Natural Science Foundation of China(10161006)
文摘In this paper, by means of the definition of Borel exceptional value method, another exceptional value of meromorphic function which is a T exceptional value is defined by linking the concept of T direction. And we construct a meromorphic function with zero as Borel exceptional value, but not as T exceptional value; and another meromorphic function with zero as T exceptional value, but not as Borel exceptional value.
基金The NSF(11301076)of Chinathe NSF(2014J01004)of Fujian Province
文摘In this paper, by using the idea of truncated counting functions of meromorphic functions, we deal with the problem of uniqueness of the meromorphic functions whose certain nonlinear differential polynomials share one finite nonzero value.
基金Supported by the National Natural Science Foundation of China(11661044)
文摘In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively, or share four values partially, then they are identical under an appropriate deficiency assumption.
基金The NSF(11301076)of Chinathe NSF(2014J01004,2018J01658)of Fujian Province of China
文摘We mainly study the periodicity theorems of meromorphic functions having truncated or partial sharing values with their shifts, where meromorphic functions are of hyper order less than 1 and N(r, f) aT(r; f) for some positive number a.
基金The NSF (06C417) of Hunan Provincethe QNF (04QN10) of Hunan AgricultureUniversity
文摘In this paper we derive the fundamental inequality of the theorem of meromorphic functions. It extends some results of Yi Hong-xun et al. As one of its application, we then study the value distribution of f^(k)f^n-c(z).
文摘In this article,we use Zalcman Lemma to investigate the normal family of meromorphic functions concerning shared values,which improves some earlier related results.
文摘In this paper, we shall study the uniqueness problems of meromorphic functions of differential polynomials sharing two values IM. Our results improve or generalize many previous results on value sharing of meromorphic functions.
文摘In this paper, we prove a result on the uniqueness of meromorphic functions sharing three values counting multiplicity and improve a result obtained by Xiaomin Li and Hongxun Yi.
基金Supported by the Natural Science Fundation of Henan Proivince(0211050200)
文摘Let f(z) be a meromorphic function and ψ be the differential polynomial of f which satisfies the condition of -↑N(r, f)+-↑N (r, 1/f) = S(r, f). We obtain several results about the zero point of the ψ and those results extend and improve the results of Yang and Yi in this paper.
文摘Aim To study the value distribution of meromorphic functions in angular domains, the deficiency, the deficient value, the Nevanlinna direction and other singular directions. Methods A fundamental inequality of Nevanlinna characteristic functions in the angular domain was used, which is similar with the Nevanlinna secondary fundamental theorem. Results The deficiency and deficient value of meromorphic functions about an angular domain and a direction were defined. The definition of Nevanlinna direction was improved. Conclusion For a family of meromorphic functions, it is proved that the number of deficient values is at most countable and the sum of deficiencies isnt greater than 2. The existence of the Nevanlinna direction is obtained. The existence of Borel and Julia directions and the relation between them are found.