期刊文献+
共找到265,990篇文章
< 1 2 250 >
每页显示 20 50 100
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:1
1
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
下载PDF
基于Adaboost回归算法的安徽省物流需求短期预测研究 被引量:1
2
作者 荀守奎 葛成丽 《河南科技》 2024年第2期27-33,共7页
【目的】物流需求预测有助于调整物流资源的分配,对促进物流业发展具有重要意义。【方法】选取安徽省1995—2022年与物流需求相关的指标数据为原始样本数据,用货运量来表征物流需求。通过XGBoost特征选择算法筛选出6个用于预测的指标。... 【目的】物流需求预测有助于调整物流资源的分配,对促进物流业发展具有重要意义。【方法】选取安徽省1995—2022年与物流需求相关的指标数据为原始样本数据,用货运量来表征物流需求。通过XGBoost特征选择算法筛选出6个用于预测的指标。在此基础上,使用3种方法分别构建模型,并对这些模型进行对比分析。最终,选择精度最高的Adaboost回归算法来预测安徽省短期物流需求。【结果】2023—2026年,安徽省的物流需求预测值分别为402 942.428万t、369 877.222万t、380 884.375万t、382 319.5万t。【结论】未来四年,安徽省物流的货运量呈不稳定发展态势。根据安徽省的区位优势及疫情的全面开放,安徽省物流业表现出较大的发展潜力。 展开更多
关键词 adaboost 特征选择 物流需求预测 安徽省
下载PDF
多域特征提取结合AdaBoost的含未知故障提速道岔故障诊断方法
3
作者 郑云水 张亚宁 《机械科学与技术》 CSCD 北大核心 2024年第8期1350-1358,共9页
针对提速道岔未知新故障误判影响列车安全运行及道岔检修效率的问题,提出一种基于多域特征提取和自适应提升算法(Adaptive boosting, adaboost)的信号分析及故障诊断模型。首先,为了深入挖掘道岔的故障特征,分别从时域、频域及时频域提... 针对提速道岔未知新故障误判影响列车安全运行及道岔检修效率的问题,提出一种基于多域特征提取和自适应提升算法(Adaptive boosting, adaboost)的信号分析及故障诊断模型。首先,为了深入挖掘道岔的故障特征,分别从时域、频域及时频域提取故障特征,构造原始特征集;然后根据AdaBoost模型获得的特征重要度排序构造不同特征数量的分类模型,并利用模型分类精度进一步获得最佳特征子集;最后将最佳特征子集输入含判定机制的AdaBoost故障诊断模型,完成对提速道岔含未知故障类型的诊断,同时,通过对模型的再训练,实现了对现有故障诊断模型的自适应更新。结果表明:本文方法在有效提取故障特征,提高道岔已知类故障诊断精度的同时,可以有效地识别出道岔之前未出现的新故障。 展开更多
关键词 特征提取 adaboost 未知故障 提速道岔 故障诊断
下载PDF
基于改进LSTM-AdaBoost的铣刀磨损量预测
4
作者 赵小惠 杨文彬 +2 位作者 胡胜 郇凯旋 谭琦 《机床与液压》 北大核心 2024年第10期14-20,共7页
针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的... 针对铣刀磨损量预测时精度低的问题,提出一种基于黑寡妇算法(BWO)优化的长短期记忆神经网络(LSTM)与AdaBoost集成学习算法相结合的铣刀磨损量预测方法。在铣刀磨损振动信号中提取时域、频域以及时频域多域特征。通过BWO算法优化LSTM的核心参数,并将优化后的LSTM网络与AdaBoost算法进行结合,构建铣刀磨损量预测模型。最后用PHM Society 2010铣刀全寿命周期的振动数据进行实验。研究结果表明:所提方法能够有效地预测出铣刀磨损量变化值,优化后模型的平均绝对误差百分比为3.436%、均方根误差为6.471、决定系数R^(2)为0.935。该方法能够获得准确率更高的铣刀磨损量预测值,预测效率更高。 展开更多
关键词 铣刀磨损 磨损量预测 黑寡妇算法 长短期记忆神经网络 adaboost算法
下载PDF
基于Adaboost-PSO-SVM的铝电解槽健康状态诊断方法研究 被引量:1
5
作者 尹刚 钱中友 +10 位作者 曹文琦 全鹏程 许亨权 颜非亚 王民 向禹 向冬梅 卢剑 左玉海 何文 卢润廷 《化工学报》 EI CSCD 北大核心 2024年第1期354-365,共12页
针对铝电解槽在铝电解生产过程中故障频发的问题,提出了一种基于支持向量机(support vector machine,SVM)的铝电解槽健康状态诊断模型,考虑传统的支持向量机只能适用于二分类问题,采用自适应推进算法(adaptive boosting,Adaboost)将支... 针对铝电解槽在铝电解生产过程中故障频发的问题,提出了一种基于支持向量机(support vector machine,SVM)的铝电解槽健康状态诊断模型,考虑传统的支持向量机只能适用于二分类问题,采用自适应推进算法(adaptive boosting,Adaboost)将支持向量机的二分类问题转化为多分类问题用于求解铝电解槽健康状态诊断问题,充分考虑了子模型的权重,强化了模型的适用性。并利用粒子群优化算法(particle swarm optimization,PSO)对其超参数寻优,提高模型的预测精度。实验结果表明,提出的铝电解槽健康状态诊断模型的准确率和Macro-F1分数分别达到94.70%和0.9453,相较于其他传统模型均有显著提升。 展开更多
关键词 电解 算法 健康状态 预测 实验验证
下载PDF
基于Adaboost算法的沉积微相自动识别--以陇东气田Q区山西组为例 被引量:1
6
作者 黄千玲 赵军龙 +1 位作者 白倩 许鉴源 《地质通报》 CAS CSCD 北大核心 2024年第4期658-666,共9页
在油气田开发中,沉积微相识别对于明确沉积背景及单砂体刻画起着重要的作用。陇东气田地质条件复杂,主力气藏深度大、产层单一,仅山1段底部产气,对于多种资料交叉共同分析沉积微相,仅依靠人工判别沉积微相,过程复杂且容易出错,很难在沉... 在油气田开发中,沉积微相识别对于明确沉积背景及单砂体刻画起着重要的作用。陇东气田地质条件复杂,主力气藏深度大、产层单一,仅山1段底部产气,对于多种资料交叉共同分析沉积微相,仅依靠人工判别沉积微相,过程复杂且容易出错,很难在沉积微相和测井数据之间建立精确的对应关系。为了充分利用测井资料,提高沉积微相划分的效率,提出一种基于Adaboost算法的沉积微相自动识别方法,为后期气田开发沉积背景及单砂体刻画提供更准确的依据。在研究中,对测井曲线进行优选,并进行预处理,运用数学统计法提取了6个特征参数作为训练的输入集,把沉积微相的类型作为训练的输出结果标签,从已解释的沉积微相数据中选取共1210组作为训练样本,其中组建的训练样本共约968组,组建测试样本242组。研究结果显示,应用该方法的训练效果和测试结果的准确性分别达到96.45%,90.4%,可以验证该方法在陇东气田Q区应用效果较好。 展开更多
关键词 沉积微相 adaboost算法 测井 自动识别 陇东气田
下载PDF
基于FOA-BP-AdaBoost的大坝变形预测模型及应用
7
作者 王凯 李鸳承 +3 位作者 范亚军 何广焕 蒙金龙 赵磊 《红水河》 2024年第2期1-5,共5页
为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位... 为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位量化对比。结果表明:强预测模型集齐了果蝇算法全局优化、BP神经网络局部寻优和AdaBoost“优中选优”的特点,最大程度优化了预测效果;实例应用证实了FOA-BP-AdaBoost模型在大坝变形预测领域的准确性和有效性。该模型已成功应用于工程实例,可为类似工程提供参考。 展开更多
关键词 大坝 变形监测 FOA-BP-adaboost模型 强预测模型 果蝇优化算法 BP神经网络
下载PDF
基于自适应增强(AdaBoost)的径向基(RBF)神经网络改进算法在关键词预测中的应用
8
作者 陈张一 朱朝阳 +1 位作者 邹玲 胡小君 《科技管理研究》 2024年第18期215-221,共7页
探究学科或领域内研究发展趋势和热点一直以来受到国内外学者们重点关注,而高频关键词的频次变化分析是其中重要的研究内容。关键词的变化与时间存在强相关性,但当前仅有少数研究考虑了关键词随时间密切变化的特性。在考虑关键词信息的... 探究学科或领域内研究发展趋势和热点一直以来受到国内外学者们重点关注,而高频关键词的频次变化分析是其中重要的研究内容。关键词的变化与时间存在强相关性,但当前仅有少数研究考虑了关键词随时间密切变化的特性。在考虑关键词信息的时间属性基础上,提出一种基于自适应增强(AdaBoost)的径向基(RBF)神经网络预测算法(以下简称“RBF改进算法”),对关键词频次进行分析预测。对中国知网2007—2022年收录的医学图像期刊论文关键词进行处理,其中将2007年至2021年的数据作为实验训练数据,2022年数据作为验证数据,通过算例分析,对比RBF改进算法、反向传播算法和时间序列算法对关键词词频的预测结果。结果发现:通过AdaBoost算法对RBF算法进行改进,能够增强RBF神经网络的泛化能力以及对样本的适应性,同时保留了RBF神经网络较好的非线性映射能力这一优点;RBF改进算法预测结果与实际数据接近,其预测精度优于反向传播神经网络和时间序列算法,该算法的预测效果更佳。 展开更多
关键词 词频 预测算法 adaboost算法 RBF神经网络 算法应用 算法优化 医学图像
下载PDF
基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测 被引量:2
9
作者 史彭珍 魏霞 +3 位作者 张春梅 谢丽蓉 叶家豪 杨家梁 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期226-233,共8页
针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost)。首先,... 针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost)。首先,利用变分模态分解将原始功率信号数据分解多个子序列。其次,利用蝴蝶优化算法优化最小二乘支持向量机组合预测模型对每个子序列进行预测。最后通过自适应校正算法将多个分量预测值重构得到最终的预测值,结合西北某一风电场提供的风电功率数据为例验证模型的有效性。结果验证了建立的组合预测模型能够较好地对短期风电功率进行预测,并具有较好的预测精度。 展开更多
关键词 风电功率预测 最小二乘支持向量机 变分模态分解 自适应校正 预测精度
下载PDF
Yarn Quality Prediction for Small Samples Based on AdaBoost Algorithm 被引量:1
10
作者 刘智玉 陈南梁 汪军 《Journal of Donghua University(English Edition)》 CAS 2023年第3期261-266,共6页
In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBo... In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples. 展开更多
关键词 stability and generalization ability for small samples.Key words:yarn quality prediction adaboost algorithm small sample generalization ability
下载PDF
一种可用于肝癌呼气信号鉴别的改进AdaBoost级联分类器
11
作者 郝丽俊 朱耿 +1 位作者 黄钢 严加勇 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第2期162-172,共11页
为了降低呼气检测技术在肝癌筛查中的漏诊率,本研究设计一种改进的AdaBoost级联分类器,并将其应用于鉴别健康志愿者和肝癌患者的呼气信号。首先,对训练样本进行自助划分获得一组训练子集。基于该训练子集,先后利用不同的机器学习算法,采... 为了降低呼气检测技术在肝癌筛查中的漏诊率,本研究设计一种改进的AdaBoost级联分类器,并将其应用于鉴别健康志愿者和肝癌患者的呼气信号。首先,对训练样本进行自助划分获得一组训练子集。基于该训练子集,先后利用不同的机器学习算法,采用K折交叉训练和投票法得到多个子分类器;接着,将多个子分类器加权组合得到一个改进的AdaBoost分类器;然后,再次自助划分训练样本,以新的训练子集训练得到另一个AdaBoost分类器;最后,将两个AdaBoost分类器串联形成级联分类器。测试样本送入该级联分类器后,按照级联规则,潜在的异常样本将被反复筛查。以电子鼻采集到的120名志愿者的呼气信号的Relief优化特征集为训练样本,构建改进AdaBoost级联分类器,并对40例测试样本进行鉴别。结果表明,该级联分类器可有效区分出测试组中的肝癌患者和健康人的呼气信号,平均敏感性为93.42%,明显优于传统AdaBoost级联分类器,漏诊率显著降低。此外,该级联分类器的稳定性较好,精度的变异系数仅为3.95%。可见,改进AdaBoost级联分类器可有效提升分类器对肝癌呼气信号的检测能力,对实现基于呼气检测的肝癌无创普及性筛查技术的研究具有重要意义。 展开更多
关键词 肝癌呼气法检测 adaboost级联分类器 漏诊率 变异系数 Relief优化特征集
下载PDF
基于AdaBoost学习策略的污水近红外光谱快速检测
12
作者 王劲夫 郭松杰 +3 位作者 厉林聪 赵顺毅 栾小丽 刘飞 《控制工程》 CSCD 北大核心 2024年第7期1314-1323,共10页
对实际污水样本的近红外光谱数据进行建模,可以预测水质指标,实现污水水质监测。但实际污水样本的多样性不足,标签值集中在某个较低的区间内,样本间离散度低、区分度小,导致近红外光谱数据和标签值间的相关性较弱,一般的分类模型和回归... 对实际污水样本的近红外光谱数据进行建模,可以预测水质指标,实现污水水质监测。但实际污水样本的多样性不足,标签值集中在某个较低的区间内,样本间离散度低、区分度小,导致近红外光谱数据和标签值间的相关性较弱,一般的分类模型和回归模型的预测准确度较低。因此,利用自适应增强(adaptive boosting,AdaBoost)算法进行建模以提高模型的准确度,利用集成策略将多个子学习器组合为一个准确度更高的强学习器。此外,人为配置具有浓度梯度的标准样本对实际污水样本进行补充,以减弱实际污水样本的多样性不足对建模精度的影响。在不同数据集上对AdaBoost算法和其他常用算法进行了对比,对比结果证明了AdaBoost算法在污水水质快速检测方面的有效性。 展开更多
关键词 adaboost 近红外光谱 机器学习 快速检测
下载PDF
基于Gentle Adaboost的气密性检测系统
13
作者 张梓齐 耿乐陶 +4 位作者 李阳 杨正乐 郭子兴 胡敏 庄正飞 《机床与液压》 北大核心 2024年第4期86-92,共7页
差压法气密性检测易受外部因素与预设参数影响。针对问题基于集成学习建立气密性检测系统,包含传感器终端数据采集系统、人机交互界面,并用最小二乘法对传感器进行线性拟合,利用Gentle Adaboost算法寻找每轮迭代中最佳弱分类器并更新下... 差压法气密性检测易受外部因素与预设参数影响。针对问题基于集成学习建立气密性检测系统,包含传感器终端数据采集系统、人机交互界面,并用最小二乘法对传感器进行线性拟合,利用Gentle Adaboost算法寻找每轮迭代中最佳弱分类器并更新下一轮样本权重,通过集成数轮迭代中最佳弱分类器组成强分类器,对被测物的气密性能进行判断。实验结果表明:所提系统在气密性检测中的准确度、精确度与召回率皆优于传统方法与单一分类模型,准确度达到99.8%,能有效克服外部因素对检测结果的影响,提高了差压法气密性检测的准确性与稳定性。 展开更多
关键词 气密性检测 差压法 分类器 集成学习 Gentle adaboost算法
下载PDF
基于Adaboost算法的医院建造成本预测系统构建
14
作者 何琪峰 胡津铭 +3 位作者 王刚 曲建睿 李莹 姜阳 《微型电脑应用》 2024年第10期120-125,共6页
医院建造成本预测系统的建设,可以提高医院建造成本的准确预测能力,为医疗机构规划预算提供科学依据,有效管理资源,确保医疗基础设施的高效建设。为了解决目前研究中预测准确性不高的问题,提出一个基于Adaboost算法的医院建造成本预测... 医院建造成本预测系统的建设,可以提高医院建造成本的准确预测能力,为医疗机构规划预算提供科学依据,有效管理资源,确保医疗基础设施的高效建设。为了解决目前研究中预测准确性不高的问题,提出一个基于Adaboost算法的医院建造成本预测系统建设方案。仿真实验结果表明,该算法在收集的实验数据集中的预测准确率综合指标AUC值为95%,比SVM、MLP、决策树、BP神经网络、PSO等多个基线模型的效果更好。该系统的上线将为医院基建和财务管理提供有力支持。 展开更多
关键词 adaboost 医院建造成本预测 医院基建管理 集成学习
下载PDF
基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断方法
15
作者 王艳 王寅初 +3 位作者 赵洪山 李伟 连洪钵 康磊 《电力自动化设备》 EI CSCD 北大核心 2024年第9期205-211,218,共8页
为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题... 为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题,引入基于正弦优化的改进麻雀搜索算法(ISSA)优化相关参数,提高基分类器的分类性能。使用改进的自适应增强(AdaBoost.M2)算法构建集成学习模型,扩展基分类器的输出,并引入伪损失函数替代传统AdaBoost算法中的加权误差,以增强集成分类器综合表达能力,得到基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断模型,进一步提高模型识别精度。通过909组油中溶解气体分析(DGA)样本对所提方法进行实例分析,结果表明该方法具有较好的诊断精度和分类性能,能够实现电力变压器故障类型的准确识别。 展开更多
关键词 电力变压器 故障诊断 集成学习 智能优化算法 极限学习机
下载PDF
基于AdaBoost算法的新能源汽车电机异常故障检测
16
作者 倪龙飞 白倩 张治斌 《计算机仿真》 2024年第4期97-101,共5页
新能源汽车的电机系统包含许多复杂的部件和子系统,部件之间的相互作用使得异常故障的检测变得复杂,而电机异常故障检测主要采用人工检测方式,即通过耳朵听声音,用眼睛观察,用手触摸找出故障位置,导致故障检测精度较低。因此,提出AdaBo... 新能源汽车的电机系统包含许多复杂的部件和子系统,部件之间的相互作用使得异常故障的检测变得复杂,而电机异常故障检测主要采用人工检测方式,即通过耳朵听声音,用眼睛观察,用手触摸找出故障位置,导致故障检测精度较低。因此,提出AdaBoost算法下新能源汽车电机异常故障检测方法。通过传感器采集电机信号,采用距离相似度、模糊隶属度函数提取信号特征,借助遗传算法的编码操作、交叉操作及其变异操作获取关键信号特征,运用自适应增强(Adaptive Boosting,AdaBoost)算法将信号特征分成正常信号和异常故障,以此实现对新能源汽车电机异常故障检测。实验结果表明,所提算法电机异常故障检测精度高,且耗时短。 展开更多
关键词 弱分类器 强分类器 遗传算法 新能源汽车 电机异常故障检测
下载PDF
顾及地球物理效应的GNSS高程时间序列AdaBoost预测和插值方法
17
作者 鲁铁定 李祯 《测绘学报》 EI CSCD 北大核心 2024年第6期1077-1085,共9页
传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和... 传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和插值性能,试验选取4个GNSS站的高程时间序列进行分析。建模试验表明,相较于Prophet模型,AdaBoost模型的拟合精度提升了约35%;预测结果表明,在12个月的预测周期内,AdaBoost模型在4个GNSS站的MAE值为4.0~4.5 mm,RMSE值约为5.0~6.0 mm;插值试验表明,相较于三次样条插值方法,AdaBoost插值模型的精度约提升了15%~28%。预测和插值试验表明,顾及地球物理效应的AdaBoost模型可以应用于GNSS高程时间序列预测与插值。 展开更多
关键词 GNSS高程时间序列 地球物理效应 预测 插值 自适应提升算法
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:1
18
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
19
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms OPTIMIZATION LEACH PEAGSIS
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
20
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部