期刊文献+
共找到11,089篇文章
< 1 2 250 >
每页显示 20 50 100
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
1
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
2
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining Roof fall Fuzzy logic Genetic algorithm
下载PDF
Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation
3
作者 Shujing Li Zhangfei Li +2 位作者 Wenhui Cheng Chenyang Qi Linguo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2049-2063,共15页
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau... To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation. 展开更多
关键词 Image segmentation image thresholding chimp optimization algorithm chaos initialization Cauchy mutation
下载PDF
A Self-Adapting and Efficient Dandelion Algorithm and Its Application to Feature Selection for Credit Card Fraud Detection
4
作者 Honghao Zhu MengChu Zhou +1 位作者 Yu Xie Aiiad Albeshri 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期377-390,共14页
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all... A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods. 展开更多
关键词 Credit card fraud detection(CCFD) dandelion algorithm(Da) feature selection normal sowing operator
下载PDF
Optimizing Bucket Elevator Performance through a Blend of Discrete Element Method, Response Surface Methodology, and Firefly Algorithm Approaches
5
作者 Pirapat Arunyanart Nithitorn Kongkaew Supattarachai Sudsawat 《Computers, Materials & Continua》 SCIE EI 2024年第8期3379-3403,共25页
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a... This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications. 展开更多
关键词 Discrete element method(DEM) design of experiments(DOE) firefly algorithm(Fa) response surface methodology(RSM)
下载PDF
Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb&Observe under Partial Shading Conditions
6
作者 Zhaoqiang Wang Fuyin Ni 《Energy Engineering》 EI 2024年第12期3779-3799,共21页
Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall ... Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall into local optima and fail to find the global optimum.To address this issue,a composite MPPT algorithm is proposed.It combines the improved kepler optimization algorithm(IKOA)with the optimized variable-step perturb and observe(OIP&O).The update probabilities,planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized.This adaptation meets the varying needs of the initial and later stages of the iterative process and accelerates convergence.During stochastic exploration,the refined position update formulas enhance diversity and global search capability.The improvements in the algorithmreduces the likelihood of falling into local optima.In the later stages,the OIP&O algorithm decreases oscillation and increases accuracy.compared with cuckoo search(CS)and gray wolf optimization(GWO),simulation tests of the PV hybrid inverter demonstrate that the proposed IKOA-OIP&O algorithm achieves faster convergence and greater stability under static,local and dynamic shading conditions.These results can confirm the feasibility and effectiveness of the proposed PV MPPT algorithm for PV hybrid systems. 展开更多
关键词 PV hybrid inverter kepler optimization algorithm maximum power point tracking perturb and observe
下载PDF
Application Analysis of Nursing Students'Grades in Course Relevance Based on Association Rule Mining Algorithm Apriori
7
作者 Xuemei Li Edward CJimenez 《Journal of Contemporary Educational Research》 2024年第2期213-223,共11页
By analyzing the correlation between courses in students’grades,we can provide a decision-making basis for the revision of courses and syllabi,rationally optimize courses,and further improve teaching effects.With the... By analyzing the correlation between courses in students’grades,we can provide a decision-making basis for the revision of courses and syllabi,rationally optimize courses,and further improve teaching effects.With the help of IBM SPSS Modeler data mining software,this paper uses Apriori algorithm for association rule mining to conduct an in-depth analysis of the grades of nursing students in Shandong College of Traditional Chinese Medicine,and to explore the correlation between professional basic courses and professional core courses.Lastly,according to the detailed analysis of the mining results,valuable curriculum information will be found from the actual teaching data. 展开更多
关键词 Grade analysis apriori algorithm Course relevance Data mining
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
8
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-Nearest Neighbor and Mean imputation
下载PDF
A Self-organization Mapping Neural Network Algorithm and Its Application to Identify Ecosystem Service Zones 被引量:16
9
作者 战金艳 史娜娜 +1 位作者 吴红 邓祥征 《Agricultural Science & Technology》 CAS 2009年第5期162-165,共4页
The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem A... The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers. 展开更多
关键词 Neural network algorithm Ecosystem services Ecosystem service zones Sustainable ecosystem management
下载PDF
FLIGHT CLASSIFICATION MODEL BASED ON TRANSITIVE CLOSURE ALGORITHM AND APPLICATION TO FLIGHT SEQUENCING PROBLEM 被引量:3
10
作者 李雄 徐肖豪 李冬宾 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第1期31-35,共5页
A new arrival and departure flight classification method based on the transitive closure algorithm (TCA) is proposed. Firstly, the fuzzy set theory and the transitive closure algorithm are introduced. Then four diff... A new arrival and departure flight classification method based on the transitive closure algorithm (TCA) is proposed. Firstly, the fuzzy set theory and the transitive closure algorithm are introduced. Then four different factors are selected to establish the flight classification model and a method is given to calculate the delay cost for each class. Finally, the proposed method is implemented in the sequencing problems of flights in a terminal area, and results are compared with that of the traditional classification method(TCM). Results show that the new classification model is effective in reducing the expenses of flight delays, thus optimizing the sequences of arrival and departure flights, and improving the efficiency of air traffic control. 展开更多
关键词 air traffic control transitive closure algorithm cost of flight delay classification model
下载PDF
Expressway traffic flow prediction using chaos cloud particle swarm algorithm and PPPR model 被引量:2
11
作者 赵泽辉 康海贵 李明伟 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期328-335,共8页
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf... Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting. 展开更多
关键词 expressway traffic flow forecasting projectionpursuit regression particle swarm algorithm chaoticmapping cloud model
下载PDF
CONSTRAINED VITERBI ALGORITHM AND ITS APPLICATION TO ERROR RESILIENT TRANSMISSION OF SPIHT CODED IMAGES 被引量:1
12
作者 周霆 许明 +1 位作者 陈东侠 余轮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期155-159,共5页
To overcome some drawbacks of Viterbi algorithm (VA), such as exponential growing complexity of decoding, and its poor performance under bad channel conditions, some available known information must be used as cons... To overcome some drawbacks of Viterbi algorithm (VA), such as exponential growing complexity of decoding, and its poor performance under bad channel conditions, some available known information must be used as constrained condition and apriori knowledge for decoding. A new constrained VA is proposed by adding con- straint bits directly for conventional codec. Compared with the conventional VA, under the bad channel condi- tion, the proposed scheme can improve the peak signal to noise ratio (PSNR) of the decoding image 2--10 dB by changing the number of constrained bits. Experimental results show that it is an efficient error-controlling way for the transmission of set partitioning in hierarchical trees (SPIHT) coded image. 展开更多
关键词 Viterbi algorithm(Va image communication systems constrained Viterbi algorithm(C-Va set partitioning in hierachical trees(SPIHT)
下载PDF
Neural Network Based Algorithm and Simulation of Information Fusion in the Coal Mine 被引量:4
13
作者 ZHANG Xiao-qiang WANG Hui-bing YU Hong-zhen 《Journal of China University of Mining and Technology》 EI 2007年第4期595-598,共4页
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a... The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented. 展开更多
关键词 neural network information fusion algorithm and simulation SENSORS
下载PDF
Electro-Hydraulic Servo System Identification of Continuous Rotary Motor Based on the Integration Algorithm of Genetic Algorithm and Ant Colony Optimization 被引量:1
14
作者 王晓晶 李建英 +1 位作者 李平 修立威 《Journal of Donghua University(English Edition)》 EI CAS 2012年第5期428-433,共6页
In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which ... In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO. 展开更多
关键词 continuous rotary motor system identification genetic algorithm and ant colony optimization (Ga-aCO) algorithm
下载PDF
Infeasibility test algorithm and fast repair algorithm of job shop scheduling problem
15
作者 孙璐 黄志 +1 位作者 张惠民 顾文钧 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期88-91,共4页
To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algori... To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility. 展开更多
关键词 INFEaSIBILITY job shop scheduling repairing algorithm
下载PDF
Fuzzy Optimization of an Elevator Mechanism Applying the Genetic Algorithm and Neural Networks 被引量:2
16
作者 XI Ping-yuan WANG Bing +1 位作者 SHENTU Liu-fang HU Heng-yin 《International Journal of Plant Engineering and Management》 2005年第4期236-240,共5页
Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth ... Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth corona of a worm gear in an elevator mechanism. The method of second-class comprehensive evaluation was used based on the optimal level cut set, thus the optimal level value of every fuzzy constraint can be attained; the fuzzy optimization is transformed into the usual optimization. The Fast Back Propagation of the neural networks algorithm are adopted to train feed-forward networks so as to fit a relative coefficient. Then the fitness function with penalty terms is built by a penalty strategy, a neural networks program is recalled, and solver functions of the Genetic Algorithm Toolbox of Matlab software are adopted to solve the optimization model. 展开更多
关键词 elevator mechanism fuzzy design optimization genetic algorithm and neural networks toolbox
下载PDF
Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm
17
作者 Hongye Yu Yuliang Huang Biao Wu 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第11期16-22,共7页
We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of L gates we can co... We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of L gates we can construct a quantum adiabatic algorithm with time complexity of O(L). Additionally, our construction shows that one may exponentially speed up some quantum adiabatic algorithms by properly choosing an evolution path. 展开更多
关键词 Exact Equivalence between Quantum adiabatic algorithm and Quantum Circuit algorithm
下载PDF
Preconditioned BiCGSTAB algorithm and its applications to eddy current solutions 被引量:1
18
作者 朱发熙 余海涛 胡敏强 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期362-366,共5页
A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special tec... A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast. 展开更多
关键词 preconditioned bi-conjugate gradient stabilized BiCGSTaB algorithm incomplete LU decomposition orthogonal list finite dement method(FEM) eddy current
下载PDF
Dynamic Topology Multi Force Particle Swarm Optimization Algorithm and Its Application 被引量:14
19
作者 CHEN Dongning ZHANG Ruixing +1 位作者 YAO Chengyu ZHAO Zheyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期124-135,共12页
Particle swarm optimization (PSO) algorithm is an effective bio-inspired algorithm but it has shortage of premature convergence. Researchers have made some improvements especially in force rules and population topol... Particle swarm optimization (PSO) algorithm is an effective bio-inspired algorithm but it has shortage of premature convergence. Researchers have made some improvements especially in force rules and population topologies. However, the current algorithms only consider a single kind of force rules and lack consideration of comprehensive improvement in both multi force rules and population topologies. In this paper, a dynamic topology multi force particle swarm optimization (DTMFPSO) algorithm is proposed in order to get better search performance. First of all, the principle of the presented multi force particle swarm optimization (MFPSO) algorithm is that different force rules are used in different search stages, which can balance the ability of global and local search. Secondly, a fitness-driven edge-changing (FE) topology based on the probability selection mechanism of roulette method is designed to cut and add edges between the particles, and the DTMFPSO algorithm is proposed by combining the FE topology with the MFPSO algorithm through concurrent evolution of both algorithm and structure in order to further improve the search accuracy. Thirdly, Benchmark functions are employed to evaluate the performance of the DTMFPSO algorithm, and test results show that the proposed algorithm is better than the well-known PSO algorithms, such as gPSO, MPSO, and EPSO algorithms. Finally, the proposed algorithm is applied to optimize the process parameters for ultrasonic vibration cutting on SiC wafer, and the surface quality of the SiC wafer is improved by 12.8% compared with the PSO algorithm in Ref. [25]. This research proposes a DTMFPSO algorithm with multi force rules and dynamic population topologies evolved simultaneously, and it has better search performance. 展开更多
关键词 force rule MFPSO algorithm FE topology DTMFPSO algorithm parameter optimization
下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:22
20
作者 LONG Jiangqi LAN Fengchong CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,... For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm BP neural network mechanical clinching JOINT properties prediction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部