Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special...Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special circle center target board is designed to calibrate the camera,and then the registration of the homography matrix is optimized by using the improved RANSAC(Random sample consensus)algorithm combined with the designed special target board,and the parameters of the wheel alignment system are adjusted by using the space vector principle.Accurate measurements are made to obtain the parameters of the four-wheel alignment.Design a calibration comparison experiment between the traditional target board and the new type of target board,and conduct a comparative test with the existing four-wheel aligner of the depot.The experimental results show that the use of the new target board-binding optimization algorithm can improve the calibration efficiency by about 9%to 21%,while improving the calibration accuracy by about 10.6%to 17.8%.And through the real vehicle test,it is verified that the use of the new target combined with the optimization algorithm can ensure the accuracy and reliability of the four-wheel positioning.This method has a certain significance in the rapid detection of vehicle four-wheel alignment parameters.展开更多
基金Anhui Province Key Research and Development Program(No.2022107020012)Shenzhen Science and Technology Innovation Project(No.JSGG20191129102008260)。
文摘Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special circle center target board is designed to calibrate the camera,and then the registration of the homography matrix is optimized by using the improved RANSAC(Random sample consensus)algorithm combined with the designed special target board,and the parameters of the wheel alignment system are adjusted by using the space vector principle.Accurate measurements are made to obtain the parameters of the four-wheel alignment.Design a calibration comparison experiment between the traditional target board and the new type of target board,and conduct a comparative test with the existing four-wheel aligner of the depot.The experimental results show that the use of the new target board-binding optimization algorithm can improve the calibration efficiency by about 9%to 21%,while improving the calibration accuracy by about 10.6%to 17.8%.And through the real vehicle test,it is verified that the use of the new target combined with the optimization algorithm can ensure the accuracy and reliability of the four-wheel positioning.This method has a certain significance in the rapid detection of vehicle four-wheel alignment parameters.
文摘为满足车辆行驶时能对各种车道线(实线、虚线、直道、大弯道)准确识别,提出一种基于Meanshift原理和RANSAC(Random Sample Consensus)算法的车道识别方法;该方法首先利用改进的最大熵阈值分割方法和图像灰度概率密度特征对左右车道线目标进行初定位,动态地建立车道线ROI(Region of Interests),然后运用Meanshift算法对左右车道线进行精确定位,最后利用RANSAC算法对各搜索框中候选车道线的重心进行筛选,并采用最小二乘法对左右车道线进行拟合;实验结果表明,该方法可以识别各种车道线型,并具有较好的鲁棒性;车道检测平均时间为80ms/f,车道跟踪平均时间为40ms/f。