The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live l...Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99.展开更多
The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in t...The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in this study were determined by the literature review and then the number of them was reduced by using stepwise regression analysis. Resulting variables were used as independent variables in the logistic model and as input variables for ANN and ANFIS model. After evaluating the models and comparing with each other, the ANFIS model was chosen as the best model to forecast credit rating. Rating determination was made for the countries that haven’t had a credit rating. Consequently, the ANFIS model made consistent, reliable and successful rating forecasts for the countries.展开更多
The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and t...The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.展开更多
A comparative approach was performed between the response surface method(RSM) and the adaptive neuro-fuzzy inference system(ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the ten...A comparative approach was performed between the response surface method(RSM) and the adaptive neuro-fuzzy inference system(ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the tensile elongation, of friction stir welded age hardenable AA6061 and AA2024 aluminum alloys. The effects of the welding parameters, namely the tool rotational speed, welding speed, axial load and pin profile, on the ultimate tensile strength and the tensile elongation were analyzed using a three-level, four-factor Box-Behnken experimental design. The developed design was utilized to train the ANFIS models. The predictive capabilities of RSM and ANFIS were compared based on the root mean square error, the mean absolute error, and the correlation coefficient based on the obtained data set. The results demonstrate that the developed ANFIS models are more effective than the RSM model.展开更多
In the present work,a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide.Four different machine learning algorithm...In the present work,a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide.Four different machine learning algorithms of radial basis function,multi-layer perceptron(MLP),artificial neural networks(ANN),least squares support vector machine(LSSVM)and adaptive neuro-fuzzy inference system(ANFIS)are used to model the solubility of different acids in carbon dioxide based on the temperature,pressure,hydrogen number,carbon number,molecular weight,and the dissociation constant of acid.To evaluate the proposed models,different graphical and statistical analyses,along with novel sensitivity analysis,are carried out.The present study proposes an efficient tool for acid solubility estimation in supercritical carbon dioxide,which can be highly beneficial for engineers and chemists to predict operational conditions in industries.展开更多
To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this ...To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this investigation,we use the tools of finite element analysis(FEA)for a magnificationmechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements.A poly-algorithm including the Grey-Taguchi method,fuzzy logic system,and adaptive neuro-fuzzy inference system(ANFIS)algorithm,was utilized mainly in this study.The FEA outcomes indicated that design variables have significantly affected on magnification ratio of the mechanism and verified by analysis of variance and analysis of the signal to noise of grey relational grade.The results are also predicted by employing the tool of ANFIS in MATLAB.In conclusion,the optimal findings obtained:Its magnification is larger than 40 times in comparison with the initial design,the maximum principal stress is 127.89MPa,and the first modal shape frequency obtained 397.45 Hz.Moreover,we found that the outcomes obtained deviation error compared with predicted results of displacement,stress,and frequency are 8.76%,3.6%,and 6.92%,respectively.展开更多
In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurri...In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurring at coastal regions.In this study,for the first time,the adaptive neuro-fuzzy inference system(ANFIS)is optimized using the particle swarm optimization(PSO)algorithm,and a meta-heuristic artificial intelligence model is developed for simulating the scour pattern around submerged pipes located in sedimentary beds.Afterward,six ANFIS-PSO models are developed by means of parameters affecting the scour depth.Then,the superior model is detected through sensitivity analysis.This model has the function of all input parameters.The calculated correlation coefficient and scatter index for this model are 0.993 and 0.047,respectively.The ratio of the pipe distance from the sedimentary bed to the submerged pipe diameter is introduced as the most effective input parameter.PSO significantly improves the performance of the ANFIS model.Approximately 36% of the scour depths simulated using the ANFIS model have an error less than 5%,whereas the value for ANFIS-PSO is roughly 72%.展开更多
The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are t...The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms.展开更多
Adaptive Neuro-fuzzy Inference System (ANFIS) controller was designed to control knee joint during sit to stand movement through electrical stimuli to quadriceps muscles. The developed ANFIS works as an inverse model ...Adaptive Neuro-fuzzy Inference System (ANFIS) controller was designed to control knee joint during sit to stand movement through electrical stimuli to quadriceps muscles. The developed ANFIS works as an inverse model to the system (functional electrical stimulation (FES)-induced quadriceps-lower leg system), while there is a proportional-integral-derivative (PID) controller in the feedback control. They were designated as ANFIS-PID controller. To evaluate the ANFIS-PID controller, two controllers were developed: open loop and feedback controllers. The results showed that ANFIS-PID controller not only succeeded in controlling knee joint motion during sit to stand movement, but also reduced the deviations between desired trajectory and actual knee movement to ±5°. Promising simulation results provide the potential for feasible clinical application in the future.展开更多
This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the b...This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs.展开更多
The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a ...The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy.展开更多
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
文摘Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99.
文摘The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in this study were determined by the literature review and then the number of them was reduced by using stepwise regression analysis. Resulting variables were used as independent variables in the logistic model and as input variables for ANN and ANFIS model. After evaluating the models and comparing with each other, the ANFIS model was chosen as the best model to forecast credit rating. Rating determination was made for the countries that haven’t had a credit rating. Consequently, the ANFIS model made consistent, reliable and successful rating forecasts for the countries.
基金Projects(2007AA041401,2007AA04Z194) supported by the National High Technology Research and Development Program of China
文摘The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.
基金Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Enathur, Kanchipuram, Tamilnadu for funding this research as a university minor research project
文摘A comparative approach was performed between the response surface method(RSM) and the adaptive neuro-fuzzy inference system(ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the tensile elongation, of friction stir welded age hardenable AA6061 and AA2024 aluminum alloys. The effects of the welding parameters, namely the tool rotational speed, welding speed, axial load and pin profile, on the ultimate tensile strength and the tensile elongation were analyzed using a three-level, four-factor Box-Behnken experimental design. The developed design was utilized to train the ANFIS models. The predictive capabilities of RSM and ANFIS were compared based on the root mean square error, the mean absolute error, and the correlation coefficient based on the obtained data set. The results demonstrate that the developed ANFIS models are more effective than the RSM model.
基金This research is sponsored by the Project:“Support of research and development activities of the J.Selye University in the field of Digital Slovakia and creative industry”of the Research&Innovation Operational Programme(ITMS code:NFP313010T504)co-funded by the European Regional Development Fund.
文摘In the present work,a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide.Four different machine learning algorithms of radial basis function,multi-layer perceptron(MLP),artificial neural networks(ANN),least squares support vector machine(LSSVM)and adaptive neuro-fuzzy inference system(ANFIS)are used to model the solubility of different acids in carbon dioxide based on the temperature,pressure,hydrogen number,carbon number,molecular weight,and the dissociation constant of acid.To evaluate the proposed models,different graphical and statistical analyses,along with novel sensitivity analysis,are carried out.The present study proposes an efficient tool for acid solubility estimation in supercritical carbon dioxide,which can be highly beneficial for engineers and chemists to predict operational conditions in industries.
基金This work is funded by Hung Yen University of Technology and Education and Industrial University of Ho Chi Minh City.
文摘To achieve high work performance for compliant mechanisms of motion scope,continuous work condition,and high frequency,we propose a new hybrid algorithm that could be applied to multi-objective optimum design.In this investigation,we use the tools of finite element analysis(FEA)for a magnificationmechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements.A poly-algorithm including the Grey-Taguchi method,fuzzy logic system,and adaptive neuro-fuzzy inference system(ANFIS)algorithm,was utilized mainly in this study.The FEA outcomes indicated that design variables have significantly affected on magnification ratio of the mechanism and verified by analysis of variance and analysis of the signal to noise of grey relational grade.The results are also predicted by employing the tool of ANFIS in MATLAB.In conclusion,the optimal findings obtained:Its magnification is larger than 40 times in comparison with the initial design,the maximum principal stress is 127.89MPa,and the first modal shape frequency obtained 397.45 Hz.Moreover,we found that the outcomes obtained deviation error compared with predicted results of displacement,stress,and frequency are 8.76%,3.6%,and 6.92%,respectively.
文摘In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurring at coastal regions.In this study,for the first time,the adaptive neuro-fuzzy inference system(ANFIS)is optimized using the particle swarm optimization(PSO)algorithm,and a meta-heuristic artificial intelligence model is developed for simulating the scour pattern around submerged pipes located in sedimentary beds.Afterward,six ANFIS-PSO models are developed by means of parameters affecting the scour depth.Then,the superior model is detected through sensitivity analysis.This model has the function of all input parameters.The calculated correlation coefficient and scatter index for this model are 0.993 and 0.047,respectively.The ratio of the pipe distance from the sedimentary bed to the submerged pipe diameter is introduced as the most effective input parameter.PSO significantly improves the performance of the ANFIS model.Approximately 36% of the scour depths simulated using the ANFIS model have an error less than 5%,whereas the value for ANFIS-PSO is roughly 72%.
文摘The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms.
文摘Adaptive Neuro-fuzzy Inference System (ANFIS) controller was designed to control knee joint during sit to stand movement through electrical stimuli to quadriceps muscles. The developed ANFIS works as an inverse model to the system (functional electrical stimulation (FES)-induced quadriceps-lower leg system), while there is a proportional-integral-derivative (PID) controller in the feedback control. They were designated as ANFIS-PID controller. To evaluate the ANFIS-PID controller, two controllers were developed: open loop and feedback controllers. The results showed that ANFIS-PID controller not only succeeded in controlling knee joint motion during sit to stand movement, but also reduced the deviations between desired trajectory and actual knee movement to ±5°. Promising simulation results provide the potential for feasible clinical application in the future.
文摘This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs.
文摘The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy.