Long Term Evolution (LTE) is designed to revolutionize mobile broadband technology with key considerations of higher data rate, improved power efficiency, low latency and better quality of service. This work analyzes ...Long Term Evolution (LTE) is designed to revolutionize mobile broadband technology with key considerations of higher data rate, improved power efficiency, low latency and better quality of service. This work analyzes the impact of resource scheduling algorithms on the performance of LTE (4G) and WCDMA (3G) networks. In this paper, a full illustration of LTE system is given together with different scheduling algorithms. Thereafter, 3G WCDMA and 4G LTE networks were simulated using Simulink simulator embedded in MATLAB and performance evaluations were carried out. The performance metrics used for the evaluations are average system throughput, packet delay, latency and allocation of fairness using Round Robin, Best CQI and Proportional fair Packet Scheduling Algorithms. The results of the evaluations on both networks were analysed. The results showed that 4G LTE network performs better than 3G WCDMA network in all the three scheduling algorithms used.展开更多
The principles of G.729 algorithm are analyzed. It proposes an optimal approach of adaptive codebook search. Realized on fixed point DSP TMS320VC5410,the searching time of the optimal algorithm is thus significantly d...The principles of G.729 algorithm are analyzed. It proposes an optimal approach of adaptive codebook search. Realized on fixed point DSP TMS320VC5410,the searching time of the optimal algorithm is thus significantly decreased,and the result shows that the speech quality is not decreased.展开更多
In the mobile radio industry, planning is a fundamental step for the deployment and commissioning of a Telecom network. The proposed models are based on the technology and the focussed architecture. In this context, w...In the mobile radio industry, planning is a fundamental step for the deployment and commissioning of a Telecom network. The proposed models are based on the technology and the focussed architecture. In this context, we introduce a comprehensive single-lens model for a fourth generation mobile network, Long Term Evolution Advanced Network (4G/LTE-A) technology which includes three sub assignments: cells in the core network. In the resolution, we propose an adaptation of the Genetic Evolutionary Algorithm for a global resolution. This is a combinatorial optimization problem that is considered as difficult. The use of this adaptive method does not necessarily lead to optimal solutions with the aim of reducing the convergence time towards a feasible solution.展开更多
Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed...Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.展开更多
The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization s...The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization signals on the frequency domain and the flexibility of frame structure configuration have brought great challenges to the initial cell search for the fifth-generation(5G) new radio(NR). To solve this problem, firstly, we analyze the physical layer frame structure of 5G NR systems. Then, by focusing on the knowledge of synchronization signals, the 5G NR cell search process is designed, and the primary synchronization signal(PSS) timing synchronization algorithm is proposed, including a 5G-based coarse synchronization algorithm and conjugate symmetry-based fine synchronization algorithm. Finally, the performance of the proposed cell search algorithm in 5G NR systems is verified through the combination of Digital Signal Processing(DSP) and personal computer(PC). And the MATLAB simulation proves that the proposed algorithm has better performance than the conventional cross-correlation algorithm when a certain frequency offset exists.展开更多
Leader election algorithms play an important role in orchestrating different processes on distributed systems, including next-generation transportation systems. This leader election phase is usually triggered after th...Leader election algorithms play an important role in orchestrating different processes on distributed systems, including next-generation transportation systems. This leader election phase is usually triggered after the leader has failed and has a high overhead in performance and state recovery. Further, these algorithms are not generally applicable to cloud-based native microservices-based applications where the resources available to the group and resources participating in a group continuously change and the current leader <span style="font-family:Verdana;">may exit the system with prior knowledge of the exit. Our proposed algo</span><span style="font-family:Verdana;">rithm, t</span><span style="font-family:Verdana;">he dynamic leader selection algorithm, provides several benefits through</span><span style="font-family:Verdana;"> selection (not, election) of a set of future leaders which are then alerted prior to </span><span style="font-family:Verdana;">the failure of the current leadership and handed over the leadership. A </span><span style="font-family:Verdana;">specific </span><span style="font-family:Verdana;">illustration of this algorithm is provided with reference to a peer-to-peer</span><span style="font-family:Verdana;"> distribution of autonomous cars in a 5G architecture for transportation networks. The proposed algorithm increases the efficiencies of applications that use the leader election algorithm and finds broad applicability in microservices-based applications.</span>展开更多
With the rapid development of the mobile internet and the internet of things(IoT),the fifth generation(5G)mobile communication system is seeing explosive growth in data traffic.In addition,low-frequency spectrum resou...With the rapid development of the mobile internet and the internet of things(IoT),the fifth generation(5G)mobile communication system is seeing explosive growth in data traffic.In addition,low-frequency spectrum resources are becoming increasingly scarce and there is now an urgent need to switch to higher frequency bands.Millimeter wave(mmWave)technology has several outstanding features—it is one of the most well-known 5G technologies and has the capacity to fulfil many of the requirements of future wireless networks.Importantly,it has an abundant resource spectrum,which can significantly increase the communication rate of a mobile communication system.As such,it is now considered a key technology for future mobile communications.MmWave communication technology also has a more open network architecture;it can deliver varied services and be applied in many scenarios.By contrast,traditional,all-digital precoding systems have the drawbacks of high computational complexity and higher power consumption.This paper examines the implementation of a new hybrid precoding system that significantly reduces both calculational complexity and energy consumption.The primary idea is to generate several sub-channels with equal gain by dividing the channel by the geometric mean decomposition(GMD).In this process,the objective function of the spectral efficiency is derived,then the basic tracking principle and least square(LS)techniques are deployed to design the proposed hybrid precoding.Simulation results show that the proposed algorithm significantly improves system performance and reduces computational complexity by more than 45%compared to traditional algorithms.展开更多
This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous ...This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.展开更多
Turbo code has been shown to have ability to achieve performance that is close to Shannon limit. It has been adopted by various commercial communication systems. Both universal mobile telecommunications system (UMTS) ...Turbo code has been shown to have ability to achieve performance that is close to Shannon limit. It has been adopted by various commercial communication systems. Both universal mobile telecommunications system (UMTS) TDD and FDD have also employed turbo code as the error correction coding scheme. It outperforms convolutional code in large block size, but because of its time delay, it is often only used in the non-real-time service. In this paper, we discuss the encoder and decoder structure of turbo code in B3G mobile communication System. In addition, various decoding techniques, such as the Log-MAP, Max-log-MAP and SOVA algorithm for non-real-time service are deduced and compared. The performance results of decoder and algorithms in different configurations are also shown.展开更多
Due to France has suffered from many terrorist attacks and the number of visitors to the Louvre has gradually increased in recent years, a good evacuation plan for the Louvre is of vital significance. We use the minim...Due to France has suffered from many terrorist attacks and the number of visitors to the Louvre has gradually increased in recent years, a good evacuation plan for the Louvre is of vital significance. We use the minimization of the total evacuation time of all tourists as the optimization goal to find an optimal path. For conventional emergencies, a static model is built to evacuate visitors. And then we establish a nonlinear programming model. Using Lingo software, we get the distribution information of the visitors in different exhibition halls. For unconventional emergencies, we establish an adaptive dynamic model of tourist evacuation based on genetic algorithm. The sensitivity analysis of the model is considered by adding new paths. By solving the nonlinear programming problem with the double objective function of maximizing evacuation time and balancing the number of people in every path, we get the evacuation time last 1582.74 s. Finally, according to our result, we built mathematical models for the evacuation after an emergency and analyzed how to adapt and implement our models for other large and crowded structures.展开更多
According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a k...According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a kind of sufficient conditions of G1 continuity are developed, and a kind of sufficient conditions of G1 continuity among N(N>2) patch B-spline surfaces meeting at a common corner are given at the end.展开更多
This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base ma...This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base matrix.RL-LDPC codes have been adopted in the technical specification of 5G new radio(5G-NR).We use the 5G NR LDPC code as the base matrix.The other is the edge coupling design.In this regard,we have designed a rate-compatible coupling algorithm,which can improve performance under multiple code rates.The constructed RL-RC-SC-LDPC code property requires a large coupling length L and thus we improved the reciprocal channel approximation(RCA)algorithm and proposed a sliding window RCA algorithm.It can provide lower com-plexity and latency than RCA algorithm.The code family shows improved thresholds close to the Shannon limit and finite-length performance compared with 5G NR LDPC codes for the additive white Gaussian noise(AWGN)channel.展开更多
In the open network environment, malicious attacks to the trust model have become increasingly serious. Compared with single node attacks, collusion attacks do more harm to the trust model. To solve this problem, a co...In the open network environment, malicious attacks to the trust model have become increasingly serious. Compared with single node attacks, collusion attacks do more harm to the trust model. To solve this problem, a collusion detector based on the GN algorithm for the trust evaluation model is proposed in the open Internet environment. By analyzing the behavioral characteristics of collusion groups, the concept of flatting is defined and the G-N community mining algorithm is used to divide suspicious communities. On this basis, a collusion community detector method is proposed based on the breaking strength of suspicious communities. Simulation results show that the model has high recognition accuracy in identifying collusion nodes, so as to effectively defend against malicious attacks of collusion nodes.展开更多
6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is...6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques.展开更多
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info...The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.展开更多
文摘Long Term Evolution (LTE) is designed to revolutionize mobile broadband technology with key considerations of higher data rate, improved power efficiency, low latency and better quality of service. This work analyzes the impact of resource scheduling algorithms on the performance of LTE (4G) and WCDMA (3G) networks. In this paper, a full illustration of LTE system is given together with different scheduling algorithms. Thereafter, 3G WCDMA and 4G LTE networks were simulated using Simulink simulator embedded in MATLAB and performance evaluations were carried out. The performance metrics used for the evaluations are average system throughput, packet delay, latency and allocation of fairness using Round Robin, Best CQI and Proportional fair Packet Scheduling Algorithms. The results of the evaluations on both networks were analysed. The results showed that 4G LTE network performs better than 3G WCDMA network in all the three scheduling algorithms used.
文摘The principles of G.729 algorithm are analyzed. It proposes an optimal approach of adaptive codebook search. Realized on fixed point DSP TMS320VC5410,the searching time of the optimal algorithm is thus significantly decreased,and the result shows that the speech quality is not decreased.
文摘In the mobile radio industry, planning is a fundamental step for the deployment and commissioning of a Telecom network. The proposed models are based on the technology and the focussed architecture. In this context, we introduce a comprehensive single-lens model for a fourth generation mobile network, Long Term Evolution Advanced Network (4G/LTE-A) technology which includes three sub assignments: cells in the core network. In the resolution, we propose an adaptation of the Genetic Evolutionary Algorithm for a global resolution. This is a combinatorial optimization problem that is considered as difficult. The use of this adaptive method does not necessarily lead to optimal solutions with the aim of reducing the convergence time towards a feasible solution.
基金Project(3502Z20179026)supported by Xiamen Science and Technology Project,China。
文摘Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.
基金partially the Chongqing Municipality’s Major Theme Project “R & D and Application of 5G terminal simulation equipment” (Grant No. Cstc2017zdcy-zdzx0030)
文摘The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization signals on the frequency domain and the flexibility of frame structure configuration have brought great challenges to the initial cell search for the fifth-generation(5G) new radio(NR). To solve this problem, firstly, we analyze the physical layer frame structure of 5G NR systems. Then, by focusing on the knowledge of synchronization signals, the 5G NR cell search process is designed, and the primary synchronization signal(PSS) timing synchronization algorithm is proposed, including a 5G-based coarse synchronization algorithm and conjugate symmetry-based fine synchronization algorithm. Finally, the performance of the proposed cell search algorithm in 5G NR systems is verified through the combination of Digital Signal Processing(DSP) and personal computer(PC). And the MATLAB simulation proves that the proposed algorithm has better performance than the conventional cross-correlation algorithm when a certain frequency offset exists.
文摘Leader election algorithms play an important role in orchestrating different processes on distributed systems, including next-generation transportation systems. This leader election phase is usually triggered after the leader has failed and has a high overhead in performance and state recovery. Further, these algorithms are not generally applicable to cloud-based native microservices-based applications where the resources available to the group and resources participating in a group continuously change and the current leader <span style="font-family:Verdana;">may exit the system with prior knowledge of the exit. Our proposed algo</span><span style="font-family:Verdana;">rithm, t</span><span style="font-family:Verdana;">he dynamic leader selection algorithm, provides several benefits through</span><span style="font-family:Verdana;"> selection (not, election) of a set of future leaders which are then alerted prior to </span><span style="font-family:Verdana;">the failure of the current leadership and handed over the leadership. A </span><span style="font-family:Verdana;">specific </span><span style="font-family:Verdana;">illustration of this algorithm is provided with reference to a peer-to-peer</span><span style="font-family:Verdana;"> distribution of autonomous cars in a 5G architecture for transportation networks. The proposed algorithm increases the efficiencies of applications that use the leader election algorithm and finds broad applicability in microservices-based applications.</span>
文摘With the rapid development of the mobile internet and the internet of things(IoT),the fifth generation(5G)mobile communication system is seeing explosive growth in data traffic.In addition,low-frequency spectrum resources are becoming increasingly scarce and there is now an urgent need to switch to higher frequency bands.Millimeter wave(mmWave)technology has several outstanding features—it is one of the most well-known 5G technologies and has the capacity to fulfil many of the requirements of future wireless networks.Importantly,it has an abundant resource spectrum,which can significantly increase the communication rate of a mobile communication system.As such,it is now considered a key technology for future mobile communications.MmWave communication technology also has a more open network architecture;it can deliver varied services and be applied in many scenarios.By contrast,traditional,all-digital precoding systems have the drawbacks of high computational complexity and higher power consumption.This paper examines the implementation of a new hybrid precoding system that significantly reduces both calculational complexity and energy consumption.The primary idea is to generate several sub-channels with equal gain by dividing the channel by the geometric mean decomposition(GMD).In this process,the objective function of the spectral efficiency is derived,then the basic tracking principle and least square(LS)techniques are deployed to design the proposed hybrid precoding.Simulation results show that the proposed algorithm significantly improves system performance and reduces computational complexity by more than 45%compared to traditional algorithms.
基金This research was funded by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019 /0000867by the Ministry of Education of the Czech Republic, Project No. SP2021/32.
文摘This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.
文摘Turbo code has been shown to have ability to achieve performance that is close to Shannon limit. It has been adopted by various commercial communication systems. Both universal mobile telecommunications system (UMTS) TDD and FDD have also employed turbo code as the error correction coding scheme. It outperforms convolutional code in large block size, but because of its time delay, it is often only used in the non-real-time service. In this paper, we discuss the encoder and decoder structure of turbo code in B3G mobile communication System. In addition, various decoding techniques, such as the Log-MAP, Max-log-MAP and SOVA algorithm for non-real-time service are deduced and compared. The performance results of decoder and algorithms in different configurations are also shown.
文摘Due to France has suffered from many terrorist attacks and the number of visitors to the Louvre has gradually increased in recent years, a good evacuation plan for the Louvre is of vital significance. We use the minimization of the total evacuation time of all tourists as the optimization goal to find an optimal path. For conventional emergencies, a static model is built to evacuate visitors. And then we establish a nonlinear programming model. Using Lingo software, we get the distribution information of the visitors in different exhibition halls. For unconventional emergencies, we establish an adaptive dynamic model of tourist evacuation based on genetic algorithm. The sensitivity analysis of the model is considered by adding new paths. By solving the nonlinear programming problem with the double objective function of maximizing evacuation time and balancing the number of people in every path, we get the evacuation time last 1582.74 s. Finally, according to our result, we built mathematical models for the evacuation after an emergency and analyzed how to adapt and implement our models for other large and crowded structures.
文摘According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a kind of sufficient conditions of G1 continuity are developed, and a kind of sufficient conditions of G1 continuity among N(N>2) patch B-spline surfaces meeting at a common corner are given at the end.
文摘This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base matrix.RL-LDPC codes have been adopted in the technical specification of 5G new radio(5G-NR).We use the 5G NR LDPC code as the base matrix.The other is the edge coupling design.In this regard,we have designed a rate-compatible coupling algorithm,which can improve performance under multiple code rates.The constructed RL-RC-SC-LDPC code property requires a large coupling length L and thus we improved the reciprocal channel approximation(RCA)algorithm and proposed a sliding window RCA algorithm.It can provide lower com-plexity and latency than RCA algorithm.The code family shows improved thresholds close to the Shannon limit and finite-length performance compared with 5G NR LDPC codes for the additive white Gaussian noise(AWGN)channel.
基金supported by the National Natural Science Foundation of China(6140224161572260+3 种基金613730176157226161472192)the Scientific&Technological Support Project of Jiangsu Province(BE2015702)
文摘In the open network environment, malicious attacks to the trust model have become increasingly serious. Compared with single node attacks, collusion attacks do more harm to the trust model. To solve this problem, a collusion detector based on the GN algorithm for the trust evaluation model is proposed in the open Internet environment. By analyzing the behavioral characteristics of collusion groups, the concept of flatting is defined and the G-N community mining algorithm is used to divide suspicious communities. On this basis, a collusion community detector method is proposed based on the breaking strength of suspicious communities. Simulation results show that the model has high recognition accuracy in identifying collusion nodes, so as to effectively defend against malicious attacks of collusion nodes.
基金supported by the Inner Mongolia Natural Science Fund Project(2019MS06013)Ordos Science and Technology Plan Project(2022YY041)Hunan Enterprise Science and Technology Commissioner Program(2021GK5042).
文摘6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques.
基金New Brunswick Innovation Foundation(NBIF)for the financial support of the global project.
文摘The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.