This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del...This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.展开更多
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting....In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.展开更多
Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algor...Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.展开更多
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by ...Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by the use of ATTA clustering methods based on ant colony piles,and Silhouette index was introduced to evaluate the clustering effect.The clustering analysis of the measured data of Sanshandao Gold Mine shows that ant colony ATTA-based clustering method does better than K-mean clustering analysis.Meanwhile,clustering results of ATTA method based on pole Euclidean distance and ATTA method based on normal vector spherical distance have a great consistence.The clustering results are most close to the pole isopycnic graph.It can efficiently realize grouping of structural plane and determination of the dominant structural surface direction.It is made up for the defects of subjectivity and inaccuracy in icon measurement approach and has great engineering value.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
In order to solve the constrained global optimization problem,we use penalty functions not only on constraints but also on objective function. Then within the framework of interval analysis,an interval Branch-and-Boun...In order to solve the constrained global optimization problem,we use penalty functions not only on constraints but also on objective function. Then within the framework of interval analysis,an interval Branch-and-Bound algorithm is given,which does not need to solve a sequence of unconstrained problems. Global convergence is proved. Numerical examples show that this algorithm is efficient.展开更多
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ...A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals.展开更多
In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases an...In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases and their subsequent retrievals are performed for further processing.Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application.If the data is already sorted,finding or searching is comparatively faster.In real-life scenarios,the data collected from different sources may not be in sorted order.Sorting algorithms are required to arrange the data in some order in the least possible time.In this paper,I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm.I call it Smart Bubble sort that exhibits dynamic footprint:The capability of adapting itself from the average-case to the best-case scenario.It is an in-place sorting algorithm and its best-case time complexity isΩ(n).It is linear and better than bubble sort,selection sort,and merge sort.In averagecase and worst-case analyses,the complexity estimates are based on its static footprint analyses.Its complexity in worst-case is O(n2)and in average-case isΘ(n^(2)).Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature.The Smart Bubble sort outperforms bubble sort,selection sort,and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario.展开更多
In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel fun...In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively.展开更多
Analyzing the average-case complexity of algorithms is a very practical but very difficult problem in computer science. In the past few years I we have demonstrated that Kolmogorov complexity is an important tool for...Analyzing the average-case complexity of algorithms is a very practical but very difficult problem in computer science. In the past few years I we have demonstrated that Kolmogorov complexity is an important tool for analyzing the average-case complexity of algorithms. We have developed the incompressibility method. In this paper, several simple examples are used to further demonstrate the power and simplicity of such method. We prove bounds on the average-case number of stacks (queues) required for sorting sequential or parallel Queuesort or Stacksort.展开更多
In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barr...In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.展开更多
In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular functi...In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular function and also the usual logarithmic function. The goal of this paper is to investigate such a kernel function and show that the algorithm has favorable complexity bound in terms of the elegant analytic properties of the kernel function. The complexity bound is shown to be O(√n(logn)2 log e/n). This bound is better than that by the classical primal-dual interior-point methods based on logarithmic barrier function and in optimization fields. Some computational results recent kernel functions introduced by some authors have been provided.展开更多
The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAH...The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.展开更多
Algorithm complexity analysis over tree structures has drawn much attention in recent years. Ph. Flajolet made the complexity analysis for recursive descent algorithm over trees by establishing a complexity measure ta...Algorithm complexity analysis over tree structures has drawn much attention in recent years. Ph. Flajolet made the complexity analysis for recursive descent algorithm over trees by establishing a complexity measure table for constructions in a formal tree algorithm description language. The so-called concept 'additive complexity algorithm over tree structures' was also introduced, which is parallel to the concept 'additive enumeration problems over trees', and some results that could only be used to recursive algorithms were obtained.展开更多
In this paper we present a large-update primal-dual interior-point algorithm for convex quadratic semi-definite optimization problems based on a new parametric kernel function.The goal of this paper is to investigate ...In this paper we present a large-update primal-dual interior-point algorithm for convex quadratic semi-definite optimization problems based on a new parametric kernel function.The goal of this paper is to investigate such a kernel function and show that the algorithm has the best complexity bound.The complexity bound is shown to be O(√n log n log n/∈).展开更多
The ant colony optimization algorithm has been widely studied and many important results have been obtained.Though this algorithm has been applied to many fields,the analysis about its convergence is much less,which w...The ant colony optimization algorithm has been widely studied and many important results have been obtained.Though this algorithm has been applied to many fields,the analysis about its convergence is much less,which will influence the improvement of this algorithm.Therefore,the convergence of this algorithm applied to the traveling salesman problem(TSP)was analyzed in detail.The conclusion that this algorithm will definitely converge to the optimal solution under the condition of 0<q_(0)<1 was proved true.In addition,the influence on its convergence caused by the properties of the closed path,heuristic functions,the pheromone and q_(0) was analyzed.Based on the above-mentioned,some conclusions about how to improve the speed of its convergence are obtained.展开更多
In this paper,we introduce the almost unitarily decomposable conjugate partial-symmetric tensors,which are different from the commonly studied orthogonally decomposable tensors by involving the conjugate terms in the ...In this paper,we introduce the almost unitarily decomposable conjugate partial-symmetric tensors,which are different from the commonly studied orthogonally decomposable tensors by involving the conjugate terms in the decomposition and the perturbation term.We not only show that successive rank-one approximation algorithm exactly recovers the unitary decomposition of the unitarily decomposable conjugate partial-symmetric tensors.The perturbation analysis of successive rank-one approximation algorithm for almost unitarily decomposable conjugate partial-symmetric tensors is also provided to demonstrate the robustness of the algorithm.展开更多
From the SAT physical model, a physical hypothesis named PHHY is proposed. By PHHY, it is proved that there is a universally efficient algorithm for solving SAT problem. Then, by square packing problem, the authors sh...From the SAT physical model, a physical hypothesis named PHHY is proposed. By PHHY, it is proved that there is a universally efficient algorithm for solving SAT problem. Then, by square packing problem, the authors show that there are interesting industrial NP-complete problems which can be solved through SAT algorithms, but each way of solving like this will be much worse than that of a certain direct solving.展开更多
In this paper we propose a class of new large-update primal-dual interior-point algorithms for P.(k) nonlinear complementarity problem (NCP), which are based on a class of kernel functions investigated by Bai et a...In this paper we propose a class of new large-update primal-dual interior-point algorithms for P.(k) nonlinear complementarity problem (NCP), which are based on a class of kernel functions investigated by Bai et al. in their recent work for linear optimization (LO). The arguments for the algorithms are followed as Peng et al.'s for P.(n) complementarity problem based on the self-regular functions [Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual Interior- Point Algorithms, Princeton University Press, Princeton, 2002]. It is worth mentioning that since this class of kernel functions includes a class of non-self-regular functions as special case, so our algorithms are different from Peng et al.'s and the corresponding analysis is simpler than theirs. The ultimate goal of the paper is to show that the algorithms based on these functions have favorable polynomial complexity.展开更多
基金supported by Northern Border University,Arar,Kingdom of Saudi Arabia,through the Project Number“NBU-FFR-2024-2248-03”.
文摘This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.
文摘In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.
基金supported by the National Natural Science Foundation of China (Nos. 71061002 and 11071158)the Natural Science Foundation of Guangxi Province of China (Nos. 0832052 and 2010GXNSFB013047)
文摘Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
基金Project(41272304)supported by the National Natural Science Foundation of ChinaProject(51074177)jointly supported by the National Natural Science Foundation and Shanghai Baosteel Group Corporation,ChinaProject(CX2012B070)supported by Hunan Provincial Innovation Fund for Postgraduated Students,China
文摘Based on structural surface normal vector spherical distance and the pole stereographic projection Euclidean distance,two distance functions were established.The cluster analysis of structure surface was conducted by the use of ATTA clustering methods based on ant colony piles,and Silhouette index was introduced to evaluate the clustering effect.The clustering analysis of the measured data of Sanshandao Gold Mine shows that ant colony ATTA-based clustering method does better than K-mean clustering analysis.Meanwhile,clustering results of ATTA method based on pole Euclidean distance and ATTA method based on normal vector spherical distance have a great consistence.The clustering results are most close to the pole isopycnic graph.It can efficiently realize grouping of structural plane and determination of the dominant structural surface direction.It is made up for the defects of subjectivity and inaccuracy in icon measurement approach and has great engineering value.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
基金This research is supported by the National Science Foundation of China.
文摘In order to solve the constrained global optimization problem,we use penalty functions not only on constraints but also on objective function. Then within the framework of interval analysis,an interval Branch-and-Bound algorithm is given,which does not need to solve a sequence of unconstrained problems. Global convergence is proved. Numerical examples show that this algorithm is efficient.
文摘A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals.
文摘In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases and their subsequent retrievals are performed for further processing.Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application.If the data is already sorted,finding or searching is comparatively faster.In real-life scenarios,the data collected from different sources may not be in sorted order.Sorting algorithms are required to arrange the data in some order in the least possible time.In this paper,I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm.I call it Smart Bubble sort that exhibits dynamic footprint:The capability of adapting itself from the average-case to the best-case scenario.It is an in-place sorting algorithm and its best-case time complexity isΩ(n).It is linear and better than bubble sort,selection sort,and merge sort.In averagecase and worst-case analyses,the complexity estimates are based on its static footprint analyses.Its complexity in worst-case is O(n2)and in average-case isΘ(n^(2)).Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature.The Smart Bubble sort outperforms bubble sort,selection sort,and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario.
文摘In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively.
文摘Analyzing the average-case complexity of algorithms is a very practical but very difficult problem in computer science. In the past few years I we have demonstrated that Kolmogorov complexity is an important tool for analyzing the average-case complexity of algorithms. We have developed the incompressibility method. In this paper, several simple examples are used to further demonstrate the power and simplicity of such method. We prove bounds on the average-case number of stacks (queues) required for sorting sequential or parallel Queuesort or Stacksort.
基金Supported by the Natural Science Foundation of Hubei Province (2008CDZD47)
文摘In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.
基金Supported by Natural Science Foundation of Hubei Province of China (Grant No. 2008CDZ047)
文摘In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular function and also the usual logarithmic function. The goal of this paper is to investigate such a kernel function and show that the algorithm has favorable complexity bound in terms of the elegant analytic properties of the kernel function. The complexity bound is shown to be O(√n(logn)2 log e/n). This bound is better than that by the classical primal-dual interior-point methods based on logarithmic barrier function and in optimization fields. Some computational results recent kernel functions introduced by some authors have been provided.
基金funded by National Nature Science Foundation of China,Yunnan Funda-Mental Research Projects,Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities and Chaozhou Science and Technology Plan Project of Funder Grant Numbers 82060329,202201AT070108,2023ZDZX2038 and 202201GY01.
文摘The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.
基金Project supported by the National Natural Science Foundation of China
文摘Algorithm complexity analysis over tree structures has drawn much attention in recent years. Ph. Flajolet made the complexity analysis for recursive descent algorithm over trees by establishing a complexity measure table for constructions in a formal tree algorithm description language. The so-called concept 'additive complexity algorithm over tree structures' was also introduced, which is parallel to the concept 'additive enumeration problems over trees', and some results that could only be used to recursive algorithms were obtained.
基金The authors gratefully acknowledge the help of the editor and anonymous referees in improving the readability of the paper.
文摘In this paper we present a large-update primal-dual interior-point algorithm for convex quadratic semi-definite optimization problems based on a new parametric kernel function.The goal of this paper is to investigate such a kernel function and show that the algorithm has the best complexity bound.The complexity bound is shown to be O(√n log n log n/∈).
基金supported by the National Natural Science Foundation of China (Grant No.60673102)the Natural Science Foundation of Jiangsu Province of China (Grant No.BK2006218).
文摘The ant colony optimization algorithm has been widely studied and many important results have been obtained.Though this algorithm has been applied to many fields,the analysis about its convergence is much less,which will influence the improvement of this algorithm.Therefore,the convergence of this algorithm applied to the traveling salesman problem(TSP)was analyzed in detail.The conclusion that this algorithm will definitely converge to the optimal solution under the condition of 0<q_(0)<1 was proved true.In addition,the influence on its convergence caused by the properties of the closed path,heuristic functions,the pheromone and q_(0) was analyzed.Based on the above-mentioned,some conclusions about how to improve the speed of its convergence are obtained.
基金This work was partially supported by the National Natural Science Foundation of China(No.11571234).
文摘In this paper,we introduce the almost unitarily decomposable conjugate partial-symmetric tensors,which are different from the commonly studied orthogonally decomposable tensors by involving the conjugate terms in the decomposition and the perturbation term.We not only show that successive rank-one approximation algorithm exactly recovers the unitary decomposition of the unitarily decomposable conjugate partial-symmetric tensors.The perturbation analysis of successive rank-one approximation algorithm for almost unitarily decomposable conjugate partial-symmetric tensors is also provided to demonstrate the robustness of the algorithm.
基金Project supported by the Chinese High-Tech Program, the National Natural Science Foundation of China and the Chinese Science Fou
文摘From the SAT physical model, a physical hypothesis named PHHY is proposed. By PHHY, it is proved that there is a universally efficient algorithm for solving SAT problem. Then, by square packing problem, the authors show that there are interesting industrial NP-complete problems which can be solved through SAT algorithms, but each way of solving like this will be much worse than that of a certain direct solving.
基金Supported by Natural Science Foundation of Hubei Province (Grant No. 2008CDZ047)Acknowledgements Thanks my supervisor Prof. M. W. Zhang for long-last guidance during the course of study.
文摘In this paper we propose a class of new large-update primal-dual interior-point algorithms for P.(k) nonlinear complementarity problem (NCP), which are based on a class of kernel functions investigated by Bai et al. in their recent work for linear optimization (LO). The arguments for the algorithms are followed as Peng et al.'s for P.(n) complementarity problem based on the self-regular functions [Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual Interior- Point Algorithms, Princeton University Press, Princeton, 2002]. It is worth mentioning that since this class of kernel functions includes a class of non-self-regular functions as special case, so our algorithms are different from Peng et al.'s and the corresponding analysis is simpler than theirs. The ultimate goal of the paper is to show that the algorithms based on these functions have favorable polynomial complexity.