The preparation process parameters of intercalated meltblown nonwoven materials are complicated, and the relationship between process parameters, structural variables, and product performance needs to be investigated ...The preparation process parameters of intercalated meltblown nonwoven materials are complicated, and the relationship between process parameters, structural variables, and product performance needs to be investigated to establish a good mechanism for product performance regulation. In this study, we first used Wilcoxon test and Pearson correlation analysis to investigate the effect of intercalation rate on structural variables and product performance. Then, regression models were constructed to predict the values of each structural variable under different combinations of process parameters. Finally, we constructed a multi-objective constrained optimization problem based on the stepwise regression model and the product variable conditions. The problem was solved using the NSGA-II algorithm. The optimal was achieved when the acceptance distance was 2.892 cm and the hot air speed was 2000 r/min.展开更多
This study aimed to enhance the utilization of agricultural waste and identify the most suitable agricultural waste materials for tomato cultivation. It utilized a locally modified substrate labeled as CK, along with ...This study aimed to enhance the utilization of agricultural waste and identify the most suitable agricultural waste materials for tomato cultivation. It utilized a locally modified substrate labeled as CK, along with five different groups of agricultural waste materials, designated as T1 (organic fertilizer: loessial soil: straw in a ratio of 4:5:1), T2 (organic fertilizer: loessial soil: straw: grains in a ratio of 3:5:1:1), T3 (organic fertilizer: loessial soil: straw: grains in a ratio of 2:5:1:2), T4 (organic fertilizer:loessial soil:straw:grains in a ratio of 1:5:1:3), and T5 ( loessial soil:straw:grains in a ratio of 5:1:4), the AquaCrop model was employed to validate soil water content and tomato growth and yield under these treatments. Furthermore, a multi-objective genetic algorithm was employed to determine the optimal agricultural waste materials that would ensure maximum tomato yield, water use efficiency (WUE), partial factor productivity of fertilizer (PFP) and sugar-acid ratio. The results indicated that the AquaCrop model reasonably simulated volumetric soil water content, tomato canopy cover, and biomass, with root mean square error (RMSE) ranges of 20.0-69.4 mm, 15.2%-25.1%, and 1.093-3.469 t/hm2, respectively. The CK group exhibited an R-squared (R2) value of 0.63 for volumetric soil water contents, while the ratio scenarios showed R2 values exceeding 0.80. The multi-objective genetic optimization algorithm identified T5 as the optimal ratio scenario, resulting in maximum tomato yield, WUE, PFP, and quality. This study offers a theoretical foundation for the efficient utilization of agricultural wastes and the production of high-quality fruits and vegetables.展开更多
Group scheduling problems have attracted much attention owing to their many practical applications.This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-de...Group scheduling problems have attracted much attention owing to their many practical applications.This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-dependent setup time,release time,and due time.It is originated from an important industrial process,i.e.,wire rod and bar rolling process in steel production systems.Two objective functions,i.e.,the number of late jobs and total setup time,are minimized.A mixed integer linear program is established to describe the problem.To obtain its Pareto solutions,we present a memetic algorithm that integrates a population-based nondominated sorting genetic algorithm II and two single-solution-based improvement methods,i.e.,an insertion-based local search and an iterated greedy algorithm.The computational results on extensive industrial data with the scale of a one-week schedule show that the proposed algorithm has great performance in solving the concerned problem and outperforms its peers.Its high accuracy and efficiency imply its great potential to be applied to solve industrial-size group scheduling problems.展开更多
This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation...This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II.展开更多
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ...In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high.展开更多
This paper explores the potential application of a modified version of the Non-dominated Sorting Genetic Algorithm (NSGA)-II for land-use planning in Mediterranean islands that constitute a geographical entity with si...This paper explores the potential application of a modified version of the Non-dominated Sorting Genetic Algorithm (NSGA)-II for land-use planning in Mediterranean islands that constitute a geographical entity with similar characteristics. Study area is the island of Naxos, which is a typical Mediterranean island. In order to monitor the land-use changes of the island for the period 1987-2010, object-based classification of three Landsat images has been carried out. The 1987 land-use classification defined the initial population for the Genetic Algorithm (GA) and the aim was to provide the optimal development scenario for Naxos island taking into consideration legislation, geological characteristics and environmental parameters. The GA was used in order to introduce land use changes while maximizing transformation suitability, compactness, economic return, and minimizing soil erosion. The output of the GA was compared to the actual development of the island. The outcomes confirmed the proposed algorithm’s convergence process, while the GA solutions eventually formed a Pareto Front and performed adequately across all objectives. The GA algorithm has proposed reduction of Irrigated farming land by 16%, increase of Dry farming land by 131%, and the maximum allowed by the defined constraints increase of Urban land (100%), mostly on the eastern and central part of Naxos. These changes significantly differ from the actual development of the island. Economic return after optimization increased by 18%, while soil erosion decreased from 1948 t/y to 1843 t/y.展开更多
In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to ...In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.展开更多
Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great ...Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.展开更多
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h...Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones.展开更多
Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tas...Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation.展开更多
Traditional material handling vehicles often use internal combustion engines as their power source, which results in exhaust emissions that pollute the environment. In contrast, automated material handling vehicles ha...Traditional material handling vehicles often use internal combustion engines as their power source, which results in exhaust emissions that pollute the environment. In contrast, automated material handling vehicles have the advantages of zero emissions, low noise, and low vibration, thus avoiding exhaust pollution and providing a more comfortable working environment for operators. In order to achieve the goals of “peaking carbon emissions by 2030 and achieving carbon neutrality by 2060”, the use of environmentally friendly autonomous material handling vehicles for material transportation is an inevitable trend. To maximize the amount of transported materials, consider peak-to-valley electricity pricing, battery pack procurement, and the construction of charging and swapping stations while achieving “minimum daily transportation volume” and “lowest investment and operational cost over a 3-year settlement period” with the shortest overall travel distance for all material handling vehicles, this paper examines two different scenarios and establishes goal programming models. The appropriate locations for material handling vehicle swapping stations and vehicle battery pack scheduling schemes are then developed using the NSGA-II algorithm and ant colony optimization algorithm. The results show that, while ensuring a daily transportation volume of no less than 300 vehicles, the lowest investment and operational cost over a 3-year settlement period is approximately 24.1 million Yuan. The material handling vehicles follow the shortest path of 119.2653 km passing through the designated retrieval points and have two shortest routes. Furthermore, the advantages and disadvantages of the proposed models are analyzed, followed by an evaluation, deepening, and potential extension of the models. Finally, future research directions in this field are suggested.展开更多
This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers th...This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed.展开更多
Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters....Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters. Simulation results show that performance tests in load change and coal quality change achieve better dynamic responses and larger scales of rejecting coal quality disturbances. The study provides an alternative to choose parameters for other control schemes of the ALSTOM gasifier.展开更多
Actuator and hydraulic system parameters have great influence on the performance,safety and reliability of the stepless capacity control system of reciprocating compressor.Due to the diversity and complex relationship...Actuator and hydraulic system parameters have great influence on the performance,safety and reliability of the stepless capacity control system of reciprocating compressor.Due to the diversity and complex relationship of parameters,traditional parameters selected and calculated based on feasibility can’t make the system run efficiently,have limitations,and may have adverse effects on the system or compressor.Therefore,taking the spring stiffness of the actuator and the impact velocity of ejection,the inlet oil pressure of the hydraulic system,and the indicated power deviation of the compressor as objective functions,the multi-parameter and multi-objective optimization research of the actuator and hydraulic system with the stepless capacity control system based on non-dominated sorting genetic algorithm II(NSGA-II)is carried out.Based on fuzzy analytic hierarchy process(FAHP),the optimal solution is selected from the Pareto front,and compared with the traditional design value,the result is better than that obtained by the traditional design method.展开更多
Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control s...Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control system,diminishing the practicality.To address this issue,the high-precision equivalent reluctance model of the HSV is established by employing an equivalent magnetic circuit,on which the dynamic characteristic of the HSV,as well as the effects of structural parameters on switching behaviour,are investigated.Based on this model,multi-objective optimization is adopted to design an HSV with faster dynamic performance and smaller volume,NSGA-II genetic algorithm is applied to obtain the Pareto front of the desired objectives.To assess the impact before and after optimization,an HSV based on the optimized structure is manufactured and tested.The experimental results show that the optimized HSV reduces 47.1%of its solenoid volume while improving opening and closing dynamic performance by 14.8%and 43.0%respectively,increasing maximum switching frequency by 6.2%,and expanding flow linear control area by 6.7%.These results validate the optimized structure and indicate that the optimization method provided in the paper is beneficial for developing superior HSV.展开更多
Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an im...Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an improved knowledge-informed non-dominated sorting genetic algorithm II(NSGA-II)for solving the MOLA problem by integrating the patch-based,edge growing/decreasing,neighborhood,and constraint steering rules.By applying both the classical and the knowledge-informed NSGA-II to a simulated planning area of 30×30 grid,we find that:when compared to the classical NSGA-II,the knowledge-informed NSGA-II consistently produces solutions much closer to the true Pareto front within shorter computation time without sacrificing the solution diversity;the knowledge-informed NSGA-II is more effective and more efficient in encouraging compact land allocation;the solutions produced by the knowledge-informed have less scattered/isolated land units and provide a good compromise between construction sprawl and conservation land protection.The better performance proves that knowledge-informed NSGA-II is a more reasonable and desirable approach in the planning context.展开更多
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S...In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively.展开更多
文摘The preparation process parameters of intercalated meltblown nonwoven materials are complicated, and the relationship between process parameters, structural variables, and product performance needs to be investigated to establish a good mechanism for product performance regulation. In this study, we first used Wilcoxon test and Pearson correlation analysis to investigate the effect of intercalation rate on structural variables and product performance. Then, regression models were constructed to predict the values of each structural variable under different combinations of process parameters. Finally, we constructed a multi-objective constrained optimization problem based on the stepwise regression model and the product variable conditions. The problem was solved using the NSGA-II algorithm. The optimal was achieved when the acceptance distance was 2.892 cm and the hot air speed was 2000 r/min.
基金supported by the National Natural Science Foundation of China(Grant No.52379042)Key R&D plan of Gansu Province(Grant No.23YFFA0019)Gansu Province East-West Cooperation Project(Grant No.23CXNA0025).
文摘This study aimed to enhance the utilization of agricultural waste and identify the most suitable agricultural waste materials for tomato cultivation. It utilized a locally modified substrate labeled as CK, along with five different groups of agricultural waste materials, designated as T1 (organic fertilizer: loessial soil: straw in a ratio of 4:5:1), T2 (organic fertilizer: loessial soil: straw: grains in a ratio of 3:5:1:1), T3 (organic fertilizer: loessial soil: straw: grains in a ratio of 2:5:1:2), T4 (organic fertilizer:loessial soil:straw:grains in a ratio of 1:5:1:3), and T5 ( loessial soil:straw:grains in a ratio of 5:1:4), the AquaCrop model was employed to validate soil water content and tomato growth and yield under these treatments. Furthermore, a multi-objective genetic algorithm was employed to determine the optimal agricultural waste materials that would ensure maximum tomato yield, water use efficiency (WUE), partial factor productivity of fertilizer (PFP) and sugar-acid ratio. The results indicated that the AquaCrop model reasonably simulated volumetric soil water content, tomato canopy cover, and biomass, with root mean square error (RMSE) ranges of 20.0-69.4 mm, 15.2%-25.1%, and 1.093-3.469 t/hm2, respectively. The CK group exhibited an R-squared (R2) value of 0.63 for volumetric soil water contents, while the ratio scenarios showed R2 values exceeding 0.80. The multi-objective genetic optimization algorithm identified T5 as the optimal ratio scenario, resulting in maximum tomato yield, WUE, PFP, and quality. This study offers a theoretical foundation for the efficient utilization of agricultural wastes and the production of high-quality fruits and vegetables.
基金This work was supported by the China Scholarship Council Scholarship,the National Key Research and Development Program of China(2017YFB0306400)the National Natural Science Foundation of China(62073069)the Deanship of Scientific Research(DSR)at King Abdulaziz University(RG-48-135-40).
文摘Group scheduling problems have attracted much attention owing to their many practical applications.This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-dependent setup time,release time,and due time.It is originated from an important industrial process,i.e.,wire rod and bar rolling process in steel production systems.Two objective functions,i.e.,the number of late jobs and total setup time,are minimized.A mixed integer linear program is established to describe the problem.To obtain its Pareto solutions,we present a memetic algorithm that integrates a population-based nondominated sorting genetic algorithm II and two single-solution-based improvement methods,i.e.,an insertion-based local search and an iterated greedy algorithm.The computational results on extensive industrial data with the scale of a one-week schedule show that the proposed algorithm has great performance in solving the concerned problem and outperforms its peers.Its high accuracy and efficiency imply its great potential to be applied to solve industrial-size group scheduling problems.
文摘This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II.
基金National Natural Science Foundation of China(No.519667013)
文摘In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high.
文摘This paper explores the potential application of a modified version of the Non-dominated Sorting Genetic Algorithm (NSGA)-II for land-use planning in Mediterranean islands that constitute a geographical entity with similar characteristics. Study area is the island of Naxos, which is a typical Mediterranean island. In order to monitor the land-use changes of the island for the period 1987-2010, object-based classification of three Landsat images has been carried out. The 1987 land-use classification defined the initial population for the Genetic Algorithm (GA) and the aim was to provide the optimal development scenario for Naxos island taking into consideration legislation, geological characteristics and environmental parameters. The GA was used in order to introduce land use changes while maximizing transformation suitability, compactness, economic return, and minimizing soil erosion. The output of the GA was compared to the actual development of the island. The outcomes confirmed the proposed algorithm’s convergence process, while the GA solutions eventually formed a Pareto Front and performed adequately across all objectives. The GA algorithm has proposed reduction of Irrigated farming land by 16%, increase of Dry farming land by 131%, and the maximum allowed by the defined constraints increase of Urban land (100%), mostly on the eastern and central part of Naxos. These changes significantly differ from the actual development of the island. Economic return after optimization increased by 18%, while soil erosion decreased from 1948 t/y to 1843 t/y.
文摘In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.
基金Supported by National Nature Science Foundation of China(Grant No:51275340)
文摘Pipe-routing for ship is formulated as searching for the near-optimal pipe paths while meeting certain objectives in an environment scattered with obstacles. Due to the complex construction in layout space, the great number of pipelines, numerous and diverse design constraints and large amount of obstacles, finding the optimum route of ship pipes is a complicated and time-consuming process. A modified NSGA-II algorithm based approach is proposed to find the near-optimal solution to solve the problem. By simplified equipment models, the layout space is firstly divided into three dimensional (3D) grids to build its mathematical model. In the modified NSGA-II algorithm, the concept of auxiliary point is introduced to improve the search range of maze algorithm (MA) as well as to guarantee the diversity of chromosomes in initial population. Then the fix-length coding mechanism is proposed, Fuzzy set theory is also adopted to select the optimal solution in Pareto solutions. Finally, the effectiveness and efficiency of the proposed approach is demonstrated by the contrast test and simulation. The merit of the proposed algorithm lies in that it can provide more appropriate solutions for the designers while subject certain constrains.
文摘Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones.
基金This work was supported by the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017.
文摘Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation.
文摘Traditional material handling vehicles often use internal combustion engines as their power source, which results in exhaust emissions that pollute the environment. In contrast, automated material handling vehicles have the advantages of zero emissions, low noise, and low vibration, thus avoiding exhaust pollution and providing a more comfortable working environment for operators. In order to achieve the goals of “peaking carbon emissions by 2030 and achieving carbon neutrality by 2060”, the use of environmentally friendly autonomous material handling vehicles for material transportation is an inevitable trend. To maximize the amount of transported materials, consider peak-to-valley electricity pricing, battery pack procurement, and the construction of charging and swapping stations while achieving “minimum daily transportation volume” and “lowest investment and operational cost over a 3-year settlement period” with the shortest overall travel distance for all material handling vehicles, this paper examines two different scenarios and establishes goal programming models. The appropriate locations for material handling vehicle swapping stations and vehicle battery pack scheduling schemes are then developed using the NSGA-II algorithm and ant colony optimization algorithm. The results show that, while ensuring a daily transportation volume of no less than 300 vehicles, the lowest investment and operational cost over a 3-year settlement period is approximately 24.1 million Yuan. The material handling vehicles follow the shortest path of 119.2653 km passing through the designated retrieval points and have two shortest routes. Furthermore, the advantages and disadvantages of the proposed models are analyzed, followed by an evaluation, deepening, and potential extension of the models. Finally, future research directions in this field are suggested.
文摘This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed.
文摘Based on a thing that it is difficult to choose the parameters of active disturbance rejection control for the non-linear ALSTOM gasifier, multi-objective optimization algorithm is applied in the choose of parameters. Simulation results show that performance tests in load change and coal quality change achieve better dynamic responses and larger scales of rejecting coal quality disturbances. The study provides an alternative to choose parameters for other control schemes of the ALSTOM gasifier.
基金the State Key Laboratory of Compressor Technology Open Fund Project(No.SKL-YSJ201808)the National Key Research and Development Plan(No.2016YFF0203305)the Special Fund Support for Basic Scientific Research Business Expenses of Central Universities(No.JD1912).
文摘Actuator and hydraulic system parameters have great influence on the performance,safety and reliability of the stepless capacity control system of reciprocating compressor.Due to the diversity and complex relationship of parameters,traditional parameters selected and calculated based on feasibility can’t make the system run efficiently,have limitations,and may have adverse effects on the system or compressor.Therefore,taking the spring stiffness of the actuator and the impact velocity of ejection,the inlet oil pressure of the hydraulic system,and the indicated power deviation of the compressor as objective functions,the multi-parameter and multi-objective optimization research of the actuator and hydraulic system with the stepless capacity control system based on non-dominated sorting genetic algorithm II(NSGA-II)is carried out.Based on fuzzy analytic hierarchy process(FAHP),the optimal solution is selected from the Pareto front,and compared with the traditional design value,the result is better than that obtained by the traditional design method.
基金Supported by the National Natural Science Foundation of China(No.52005441)Natural Science Foundation of Zhejiang Province(No.LQ21E050017)+4 种基金Young Elite Scientist Sponsorship Program by CAST(No.2022QNRC001)State Key Laboratory of Mechanical System and Vibration(No.MSV202316)"Pioneer"and"Leading Goose"R&D Program of Zhejiang Province(Nos.2022C01122,2022C01132)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RFA2023007)the Research Project of ZJUT(No.GYY-ZH2023075).
文摘Hydraulic circuits with high speed on/off valve(HSV)for servo control have become commonplace in aerospace.However,the individual valve that is not volume-optimized results in a large total size of hydraulic control system,diminishing the practicality.To address this issue,the high-precision equivalent reluctance model of the HSV is established by employing an equivalent magnetic circuit,on which the dynamic characteristic of the HSV,as well as the effects of structural parameters on switching behaviour,are investigated.Based on this model,multi-objective optimization is adopted to design an HSV with faster dynamic performance and smaller volume,NSGA-II genetic algorithm is applied to obtain the Pareto front of the desired objectives.To assess the impact before and after optimization,an HSV based on the optimized structure is manufactured and tested.The experimental results show that the optimized HSV reduces 47.1%of its solenoid volume while improving opening and closing dynamic performance by 14.8%and 43.0%respectively,increasing maximum switching frequency by 6.2%,and expanding flow linear control area by 6.7%.These results validate the optimized structure and indicate that the optimization method provided in the paper is beneficial for developing superior HSV.
文摘Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an improved knowledge-informed non-dominated sorting genetic algorithm II(NSGA-II)for solving the MOLA problem by integrating the patch-based,edge growing/decreasing,neighborhood,and constraint steering rules.By applying both the classical and the knowledge-informed NSGA-II to a simulated planning area of 30×30 grid,we find that:when compared to the classical NSGA-II,the knowledge-informed NSGA-II consistently produces solutions much closer to the true Pareto front within shorter computation time without sacrificing the solution diversity;the knowledge-informed NSGA-II is more effective and more efficient in encouraging compact land allocation;the solutions produced by the knowledge-informed have less scattered/isolated land units and provide a good compromise between construction sprawl and conservation land protection.The better performance proves that knowledge-informed NSGA-II is a more reasonable and desirable approach in the planning context.
文摘In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively.