期刊文献+
共找到28,743篇文章
< 1 2 250 >
每页显示 20 50 100
Method for triangular fuzzy multiple attribute decision making based on two-dimensional density operator method
1
作者 LIN Youliang LI Wu +1 位作者 LIU Gang HUANG Dong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期178-185,共8页
Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)oper... Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison. 展开更多
关键词 fuzzy decision making CLUSTERING density operator multi-attribute decision making(MADM)
下载PDF
Novelty of Different Distance Approach for Multi-Criteria Decision-Making Challenges Using q-Rung Vague Sets
2
作者 Murugan Palanikumar Nasreen Kausar +3 位作者 Dragan Pamucar Seifedine Kadry Chomyong Kim Yunyoung Nam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3353-3385,共33页
In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung n... In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed. 展开更多
关键词 Vague set aggregating operators euclidean distance hamming distance decision making
下载PDF
Tjong:A transformer‐based Mahjong AI via hierarchical decision‐making and fan backward
3
作者 Xiali Li Bo Liu +2 位作者 Zhi Wei Zhaoqi Wang Licheng Wu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期982-995,共14页
Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors ... Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors propose a transformer‐based Mahjong AI(Tjong)via hierarchical decision‐making.By utilising self‐attention mechanisms,Tjong effectively captures tile patterns and game dynamics,and it decouples the decision pro-cess into two distinct stages:action decision and tile decision.This design reduces de-cision complexity considerably.Additionally,a fan backward technique is proposed to address the sparse rewards by allocating reversed rewards for actions based on winning hands.Tjong consists of 15M parameters and is trained using approximately 0.5 M data over 7 days of supervised learning on a single server with 2 GPUs.The action decision achieved an accuracy of 94.63%,while the claim decision attained 98.55%and the discard decision reached 81.51%.In a tournament format,Tjong outperformed AIs(CNN,MLP,RNN,ResNet,VIT),achieving scores up to 230%higher than its opponents.Further-more,after 3 days of reinforcement learning training,it ranked within the top 1%on the leaderboard on the Botzone platform. 展开更多
关键词 decision making deep learning deep neural networks
下载PDF
Two-Stage IoT Computational Task Offloading Decision-Making in MEC with Request Holding and Dynamic Eviction
4
作者 Dayong Wang Kamalrulnizam Bin Abu Bakar Babangida Isyaku 《Computers, Materials & Continua》 SCIE EI 2024年第8期2065-2080,共16页
The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support ... The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted.In addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time slots.It is resulting in TD missing potential offloading opportunities in the future.To fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic eviction.Long Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time slot.The framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning technology.Simulation results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method. 展开更多
关键词 decision making internet of things load prediction task offloading multi-access edge computing
下载PDF
A Large-Scale Group Decision Making Model Based on Trust Relationship and Social Network Updating
5
作者 Rongrong Ren Luyang Su +2 位作者 Xinyu Meng Jianfang Wang Meng Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期429-458,共30页
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid... With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted. 展开更多
关键词 Large-scale group decision making social network updating trust relationship group consensus feedback mechanism
下载PDF
Fuzzy multi-criteria decision-making method-based operational assessment of Chinese electricity markets
6
作者 Weijie Wu Dongwei Li +2 位作者 Hui Sun Yixin Li Yining Zhang 《Global Energy Interconnection》 EI CSCD 2024年第6期733-748,共16页
The evaluation of the electricity market is crucial for fostering market construction and development.An accurate assessment of the electricity market reveals developmental trends,identifies operational issues,and con... The evaluation of the electricity market is crucial for fostering market construction and development.An accurate assessment of the electricity market reveals developmental trends,identifies operational issues,and contributes to stable and healthy market growth.This study investigated the characteristics of electricity markets in different provinces and synthesized a comprehensive set of evaluation indicators to assess market effectiveness.The evaluation framework,comprising nine indicators organized into two tiers,was constructed based on three aspects:market design,market efficiency,and developmental coordination.Furthermore,a novel fuzzy multi-criteria decision-making evaluation model for electricity market performance was developed based on the Fuzzy-BWM and fuzzy COPRAS methodologies.This model aimed to ensure both accuracy and comprehensiveness in market operation assessment.Subsequently,empirical analyses were conducted on four typical provincial-level electricity markets in China.The results indicate that Guangdong’s electricity market performed best because of its effective balance of stakeholder interests and adherence to contractual integrity principles.Zhejiang and Shandong ranked second and third,respectively,whereas Sichuan exhibited the poorest market performance.Sichuan’s electricity market must be improved in terms of market design,such that market players can obtain a fairly competitive environment.The sensitivity analysis of the constructed indicators verified the effectiveness of the evaluation model proposed in this study.Finally,policy recommendations were proposed to facilitate the sustainable development of China’s electricity markets with the objective of transforming them into efficient and secure markets adaptable to the evolution of novel power systems. 展开更多
关键词 Electricity market Operational assessment Fuzzy best-worst method Fuzzy complex proportional assessment Fuzzy multi-criteria decision making
下载PDF
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier
7
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 Multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
下载PDF
Shared decision making in rural general practices:a qualitative exploration of older rural South Australians'perceived involvement in clinical consultations with doctors
8
作者 Mohammad Hamiduzzaman Noore Siddiquee +4 位作者 Harry James Gaffney Frances Barraclough Aziz Rahman Jennene Greenhill Vicki Flood 《Global Health Journal》 2024年第3期140-146,共7页
Background:Shared decision-making(SDM)implementation is a priority for Australian health systems,including general practices but it remains complex for specific groups like older rural Australians.We initiated a quali... Background:Shared decision-making(SDM)implementation is a priority for Australian health systems,including general practices but it remains complex for specific groups like older rural Australians.We initiated a qualitative study with older rural Australians to explore barriers to and facilitators of SDM in local general practices.Methods:We conducted a patient-oriented research,partnering with older rural Australians,families,and health service providers in research design.Participants who visited general practices were purposively sampled from five small rural towns in South Australia.A semi-structured interview guide was used for interviews and reflexive thematic coding was conducted.Results:Telephone interviews were held with 27 participants.Four themes were identified around older rural adults’involvement in SDM:(1)Understanding of"patient involvement";(2)Positive and negative outcomes;(3)Barriers to SDM;and(4)Facilitators to SDM.Understanding of patient involvement in SDM considerably varied among participants,with some reporting their involvement was contingent on the“opportunity to ask questions”and the“treatment choices”offered to them.Alongside the opportunity for involvement,barriers such as avoidance of cultural care and a lack of continuity of care are new findings.Challenges encountered in SDM implementation also included resource constraints and time limitations in general practices.Rural knowledge of general practitioners and technology integration in consultations were viewed as potential enablers..Conclusion:Adequate resources and well-defined guidelines about the process should accompany the implementation of SDM in rural general practices of South Australia.Innovative strategies by general practitioners promoting health literacy and culturally-tailored communication approaches could increase older rural Australians'involvement in general. 展开更多
关键词 General practices Shared decision making Olderrural Australians Patient involvement South Australia
下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
9
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
下载PDF
Multi-attribute group decision making algorithm for web services selection based on QoS 被引量:2
10
作者 童红霞 张申生 《Journal of Southeast University(English Edition)》 EI CAS 2006年第3期302-305,共4页
To address the problem of web services selection based on quality, an approach of multi-attribute group decision making algorithm is proposed. Based on the Borda social choice function, the group decision making algor... To address the problem of web services selection based on quality, an approach of multi-attribute group decision making algorithm is proposed. Based on the Borda social choice function, the group decision making algorithm aggregates the results of multiple methods with different principles which are used to obtain constantly changing quality of service, thus increasing the confidence to select the most appropriate web service for a special task. The experimental results indicate that the proposed approach has better scalability and can be applied to large-scale distributed service computing environments. It is also shown that the proposed group decision making approach can effectively optimize the services selection and outperforms the random and robin policies. By using this approach, it can extend a method to obtain constantly changing quality of service and construct a synthetic information entity with multi-level knowledge, which guarantees the accuracy of services selection. 展开更多
关键词 web services quality of service group decision making Borda function
下载PDF
Ten misconceptions regarding decision-making in critical care
11
作者 Tara Ramaswamy Jamie L Sparling +1 位作者 Marvin G Chang Edward A Bittner 《World Journal of Critical Care Medicine》 2024年第2期72-82,共11页
Diagnostic errors are prevalent in critical care practice and are associated with patient harm and costs for providers and the healthcare system.Patient complexity,illness severity,and the urgency in initiating proper... Diagnostic errors are prevalent in critical care practice and are associated with patient harm and costs for providers and the healthcare system.Patient complexity,illness severity,and the urgency in initiating proper treatment all contribute to decision-making errors.Clinician-related factors such as fatigue,cognitive overload,and inexperience further interfere with effective decision-making.Cognitive science has provided insight into the clinical decision-making process that can be used to reduce error.This evidence-based review discusses ten common misconceptions regarding critical care decision-making.By understanding how practitioners make clinical decisions and examining how errors occur,strategies may be developed and implemented to decrease errors in Decision-making and improve patient outcomes. 展开更多
关键词 Clinical reasoning Cognitive bias Critical care Debiasing strategies decision making Diagnostic reasoning Diagnostic error HEURISTICS Medical knowledge Patient safety
下载PDF
An Effective Prediction Method for Supporting Decision Making in Real Estate Area Selection
12
作者 Haoying Jin Song Yang Mingzhi Zhao 《Journal of Computer and Communications》 2024年第7期105-119,共15页
Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on m... Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method. 展开更多
关键词 Real Estate Natural Disaster decision making Prediction Model
下载PDF
Novel combinatorial algorithm for the problems of fuzzy grey multi-attribute group decision making 被引量:13
13
作者 Rao Congjun Xiao Xinping Peng Jin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期774-780,共7页
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr... To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform. 展开更多
关键词 multi-attribute group decision making fuzzy grey number grey interval relational degree deviation degree
下载PDF
Distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm 被引量:4
14
作者 Yaozhong Zhang Lei Zhang Zhiqiang Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1236-1243,共8页
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple... A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload. 展开更多
关键词 distributed collaborative planning BLACKBOARD decision maker (DM) nested genetic algorithm (NGA).
下载PDF
Decision-Making and Management of Self-Care in Persons with Traumatic Spinal Cord Injuries: A Preliminary Study
15
作者 Paul E. Plonski Jasmin Vassileva +5 位作者 Ryan Shahidi Paul B. Perrin William Carter Lance L. Goetz Amber Brochetti James M. Bjork 《Journal of Behavioral and Brain Science》 2024年第2期47-63,共17页
Patients and physicians understand the importance of self-care following spinal cord injury (SCI), yet many individuals with SCI do not adhere to recommended self-care activities despite logistical supports. Neurobeha... Patients and physicians understand the importance of self-care following spinal cord injury (SCI), yet many individuals with SCI do not adhere to recommended self-care activities despite logistical supports. Neurobehavioral determinants of SCI self-care behavior, such as impulsivity, are not widely studied, yet understanding them could inform efforts to improve SCI self-care. We explored associations between impulsivity and self-care in an observational study of 35 US adults age 18 - 50 who had traumatic SCI with paraplegia at least six months before assessment. The primary outcome measure was self-reported self-care. In LASSO regression models that included all neurobehavioral measures and demographics as predictors of self-care, dispositional measures of greater impulsivity (negative urgency, lack of premeditation, lack of perseverance), and reduced mindfulness were associated with reduced self-care. Outcome (magnitude) sensitivity, a latent decision-making parameter derived from computationally modeling successive choices in a gambling task, was also associated with self-care behavior. These results are preliminary;more research is needed to demonstrate the utility of these findings in clinical settings. Information about associations between impulsivity and poor self-care in people with SCI could guide the development of interventions to improve SCI self-care and help patients with elevated risks related to self-care and secondary health conditions. 展开更多
关键词 Spinal Cord Injury SELF-CARE decision-making PARAPLEGIA Impulsive Behavior Health Care
下载PDF
Solution to multiple attribute group decision making problems with two decision makers 被引量:2
16
作者 Fangwei Zhang Wei Wang Xuedong Hua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期329-333,共5页
A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this ... A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this kind of problem. Secondly, a con- crete method corresponding to this kind of problem is proposed. The main tool of our research is the technique o~ the jackknife method. The main advantage of the new method is that it can identify and determine the reliability degree of the existed decision making information. Finally, a traffic engineering example is given to show the effectiveness of the new method. 展开更多
关键词 multiple attribute group decision making(MAGDM) stability theory jackknife method credibility degree traffic engineering
下载PDF
Rational and Continuous Measurement of the Emotional Decision Making in Visual Recognition of Facial Emotional Expressions with M.A.R.I.E.: First Half
17
作者 Philippe Granato Shreekumar Vinekar +1 位作者 Jean-Pierre Van Gansberghe Raymond Bruyer 《Open Journal of Psychiatry》 2024年第3期223-264,共42页
Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the i... Context: The advent of Artificial Intelligence (AI) requires modeling prior to its implementation in algorithms for most human skills. This observation requires us to have a detailed and precise understanding of the interfaces of verbal and emotional communications. The progress of AI is significant on the verbal level but modest in terms of the recognition of facial emotions even if this functionality is one of the oldest in humans and is omnipresent in our daily lives. Dysfunction in the ability for facial emotional expressions is present in many brain pathologies encountered by psychiatrists, neurologists, psychotherapists, mental health professionals including social workers. It cannot be objectively verified and measured due to a lack of reliable tools that are valid and consistently sensitive. Indeed, the articles in the scientific literature dealing with Visual-Facial-Emotions-Recognition (ViFaEmRe), suffer from the absence of 1) consensual and rational tools for continuous quantified measurement, 2) operational concepts. We have invented a software that can use computer-morphing attempting to respond to these two obstacles. It is identified as the Method of Analysis and Research of the Integration of Emotions (M.A.R.I.E.). Our primary goal is to use M.A.R.I.E. to understand the physiology of ViFaEmRe in normal healthy subjects by standardizing the measurements. Then, it will allow us to focus on subjects manifesting abnormalities in this ability. Our second goal is to make our contribution to the progress of AI hoping to add the dimension of recognition of facial emotional expressions. Objective: To study: 1) categorical vs dimensional aspects of recognition of ViFaEmRe, 2) universality vs idiosyncrasy, 3) immediate vs ambivalent Emotional-Decision-Making, 4) the Emotional-Fingerprint of a face and 5) creation of population references data. Methods: With M.A.R.I.E. enable a rational quantified measurement of Emotional-Visual-Acuity (EVA) of 1) a) an individual observer, b) in a population aged 20 to 70 years old, 2) measure the range and intensity of expressed emotions by 3 Face-Tests, 3) quantify the performance of a sample of 204 observers with hyper normal measures of cognition, “thymia,” (ibid. defined elsewhere) and low levels of anxiety 4) analysis of the 6 primary emotions. Results: We have individualized the following continuous parameters: 1) “Emotional-Visual-Acuity”, 2) “Visual-Emotional-Feeling”, 3) “Emotional-Quotient”, 4) “Emotional-Deci-sion-Making”, 5) “Emotional-Decision-Making Graph” or “Individual-Gun-Trigger”6) “Emotional-Fingerprint” or “Key-graph”, 7) “Emotional-Finger-print-Graph”, 8) detecting “misunderstanding” and 9) detecting “error”. This allowed us a taxonomy with coding of the face-emotion pair. Each face has specific measurements and graphics. The EVA improves from ages of 20 to 55 years, then decreases. It does not depend on the sex of the observer, nor the face studied. In addition, 1% of people endowed with normal intelligence do not recognize emotions. The categorical dimension is a variable for everyone. The range and intensity of ViFaEmRe is idiosyncratic and not universally uniform. The recognition of emotions is purely categorical for a single individual. It is dimensional for a population sample. Conclusions: Firstly, M.A.R.I.E. has made possible to bring out new concepts and new continuous measurements variables. The comparison between healthy and abnormal individuals makes it possible to take into consideration the significance of this line of study. From now on, these new functional parameters will allow us to identify and name “emotional” disorders or illnesses which can give additional dimension to behavioral disorders in all pathologies that affect the brain. Secondly, the ViFaEmRe is idiosyncratic, categorical, and a function of the identity of the observer and of the observed face. These findings stack up against Artificial Intelligence, which cannot have a globalist or regionalist algorithm that can be programmed into a robot, nor can AI compete with human abilities and judgment in this domain. *Here “Emotional disorders” refers to disorders of emotional expressions and recognition. 展开更多
关键词 M.A.R.I.E. UNIVERSALITY Idiosyncrasy Measurement of Emotional Quotient Emotional Fingerprint Emotional decision-making Limbic Lobe
下载PDF
Algorithm for solving the bi-level decision making problem with continuous variables in the upper level based on genetic algorithm 被引量:2
18
作者 肖剑 《Journal of Chongqing University》 CAS 2005年第1期59-62,共4页
Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algor... Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples. 展开更多
关键词 bi-level decision making Monte Carlo simulated annealing genetic algorithms
下载PDF
Greedy Algorithm Based Deep Learning Strategy for User Behavior Prediction and Decision Making Support 被引量:2
19
作者 Kumar Attangudi Perichiappan Perichappan 《Journal of Computer and Communications》 2018年第6期45-53,共9页
In this paper, we suggest a deep learning strategy for decision support, based on a greedy algorithm. Decision making support by artificial intelligence is of the most challenging trends in modern computer science. Cu... In this paper, we suggest a deep learning strategy for decision support, based on a greedy algorithm. Decision making support by artificial intelligence is of the most challenging trends in modern computer science. Currently various strategies exist and are increasingly improved in order to meet practical needs of user-oriented platforms like Microsoft, Google, Amazon, etc. 展开更多
关键词 Machine Learning BIG Data Analysis decision making Artificial INTELLIGENCE COMPUTER Science Tensorflow PREDICTION
下载PDF
A Blind Spot in the Reframing of a Universe of Possibles: Towards a Suitable Model for Decision-Making Theory and A.I.
20
作者 Gilbert Giacomoni 《Journal of Applied Mathematics and Physics》 2024年第6期2172-2189,共18页
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos... Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning. 展开更多
关键词 decision-making INNOVATION Universe of Possibles A.I. Quantum Form Fuzzy Modeling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部