Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a ...Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a sequence of different operating conditions. The priority of some loads differs in changing operating conditions. After analyzing characteristics of typical SPS, a model was developed used a grade III switchboard and an environmental prioritizing agent (EPA) algorithm. This algorithm was chosen as it is logically and physically decentralized as well as multi-agent oriented. The EPA algorithm was used to decide on the dynamic load priority, then it selected the means to best meet the maximum power supply load. The simulation results showed that higher priority loads were the first to be restored. The system satisfied all necessary constraints, demonstrating the effectiveness and validity of the proposed method.展开更多
A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed i...A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed is described as a set of functions of the unknown source location, to approximate the acoustic velocity field distribution in the wind field. Then, they are introduced into the TDOA algorithm, to construct nonlinear equations. Finally, the particle swarm optimization algorithm is used to estimate the source location. The simulation results show that the proposed algorithm can significantly improve the localization accuracy for different wind velocities, source locations and test area sizes. The experimental results show that the proposed method can reduce localization errors to about 40% of the original error in a four nodes localization system.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60704004the Fundamental Research Funds for the Central University under Grant No.HEUCFT1005
文摘Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a sequence of different operating conditions. The priority of some loads differs in changing operating conditions. After analyzing characteristics of typical SPS, a model was developed used a grade III switchboard and an environmental prioritizing agent (EPA) algorithm. This algorithm was chosen as it is logically and physically decentralized as well as multi-agent oriented. The EPA algorithm was used to decide on the dynamic load priority, then it selected the means to best meet the maximum power supply load. The simulation results showed that higher priority loads were the first to be restored. The system satisfied all necessary constraints, demonstrating the effectiveness and validity of the proposed method.
基金supported by the National Natural Science Fundation of China(61501374)Underwater Information and Control Key Laboratory Fundation(9140C230310150C23102)
文摘A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed is described as a set of functions of the unknown source location, to approximate the acoustic velocity field distribution in the wind field. Then, they are introduced into the TDOA algorithm, to construct nonlinear equations. Finally, the particle swarm optimization algorithm is used to estimate the source location. The simulation results show that the proposed algorithm can significantly improve the localization accuracy for different wind velocities, source locations and test area sizes. The experimental results show that the proposed method can reduce localization errors to about 40% of the original error in a four nodes localization system.