In this paper,negative selection and genetic algorithms are combined and an improved bi-objective optimization scheme is presented to achieve optimized negative selection algorithm detectors.The main aim of the optima...In this paper,negative selection and genetic algorithms are combined and an improved bi-objective optimization scheme is presented to achieve optimized negative selection algorithm detectors.The main aim of the optimal detector generation technique is maximal nonself space coverage with reduced number of diversified detectors.Conventionally,researchers opted clonal selection based optimization methods to achieve the maximal nonself coverage milestone;however,detectors cloning process results in generation of redundant similar detectors and inefficient detector distribution in nonself space.In approach proposed in the present paper,the maximal nonself space coverage is associated with bi-objective optimization criteria including minimization of the detector overlap and maximization of the diversity factor of the detectors.In the proposed methodology,a novel diversity factorbased approach is presented to obtain diversified detector distribution in the nonself space.The concept of diversified detector distribution is studied for detector coverage with 2-dimensional pentagram and spiral self-patterns.Furthermore,the feasibility of the developed fault detection methodology is tested the fault detection of induction motor inner race and outer race bearings.展开更多
In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical j...In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.展开更多
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exp...A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm.展开更多
To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery usin...To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effectively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness.展开更多
To address cross-ISP traffic problem caused by BitTorrent,we present our design and evaluation of a proximity-aware BitTorrent system. In our approach,clients generate global proximity-aware information by using landm...To address cross-ISP traffic problem caused by BitTorrent,we present our design and evaluation of a proximity-aware BitTorrent system. In our approach,clients generate global proximity-aware information by using landmark clustering;the tracker uses this proximity to maintain all peers in an orderly way and hands back a biased subset consisting of the peers who are physically closest to the requestor. Our approach requires no co-operation between P2P users and their Internet infra structures,such as ISPs or CDNs,no constantly path monitoring or probing their neighbors. The simulation results show that our approach can not only reduce unnecessary cross-ISP traffic,but also allow downloadsing fast.展开更多
Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be imp...Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be implemented. Under the consideration of cooperative communication systems, the scenario includes one information source, M relay stations and N destinations. This work proposes a relay selection algorithm in the Raleigh fading channel. Based on the exhaustive search method, easily to realize, the optimal selection scheme can be found with a highly complicated calculation. In order to reduce the computational complexity, an approximate optimal solution with a greedy algorithm applied for the relay station selection is proposed. With different situations of the communication systems, the performance evaluation obtained by both the proposed algorithm and the exhaustive search algorithm are given for comparison. It shows the proposed algorithm could provide a solution approach to the optimal one.展开更多
A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of dete...A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of detectors needed to cover the non-self space, and the maximization of the non-self coverage is done through an optimization algorithm with proven convergence properties. Experiments are performed to validate the assumptions made while designing the algorithm and to evaluate its performance.展开更多
The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificia...The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificial immune system.A key element of the NSA is its great dependency on the random detectors in monitoring for any abnormalities.However,these detectors have limited performance.Redundant detectors are generated,leading to difficulties for detectors to effectively occupy the non-self space.To alleviate this problem,we propose the nature-inspired metaheuristic cuckoo search(CS),a stochastic global search algorithm,which improves the random generation of detectors in the NSA.Inbuilt characteristics such as mutation,crossover,and selection operators make the CS attain global convergence.With the use of Lévy flight and a distance measure,efficient detectors are produced.Experimental results show that integrating CS into the negative selection algorithm elevated the detection performance of the NSA,with an average increase of 3.52%detection rate on the tested datasets.The proposed method shows superiority over other models,and detection rates of 98%and 99.29%on Fisher’s IRIS and Breast Cancer datasets,respectively.Thus,the generation of highest detection rates and lowest false alarm rates can be achieved.展开更多
In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power s...In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power system oscillations through the excitation control.This paper proposes a novel method to obtain optimal parameter values for Power System Stabilizer(PSS)to suppress low-frequency oscillations in the marine electric power system.In this paper,a newly developed immune clone selection algorithm was improved from the three aspects of the adaptive incentive degree,vaccination,and adaptive mutation strategies.Firstly,the typical PSS implementation type of leader-lag structure was adopted and the objective function was set in the optimization process.The performance of PSS tuned by improved immune clone selection algorithm was compared with PSS tuned by basic immune clone selection algorithm(ICSA)under various operating conditions and disturbances.Then,an improved immune clone selection algorithm(IICSA)optimization technique was implemented on two test systems for test purposes.Based on the simulations,it is found that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power system stabilizers.Moreover,the proposed approach improves the stability and dynamic performance under various loads conditions and disturbances of the marine electric power system.展开更多
Current mobility management schemes usually represent centralized or hierarchical architectures,which force data traffic to be processed by a centralized mobility anchor.This allows the mobile node(MN)to be reachable ...Current mobility management schemes usually represent centralized or hierarchical architectures,which force data traffic to be processed by a centralized mobility anchor.This allows the mobile node(MN)to be reachable anywhere and provides an efficient method for seamless session continuity.However,all of the signal messages and data traffic converge on particular mobility anchor,which causes excessive signaling and traffic at the centralized mobility anchor and single point of failure issues as data traffic increases.To overcome these limitations and handle increasing data traffic,the distributed mobility management(DMM)scheme has emerged as an alternative solution.Although previous researches have been conducted on DMM support,because their schemes employ an unconditional way to make direct paths after handover,they have some drawbacks,such as several signaling and chain of tunneling problems.Therefore,this paper introduces a new DMM scheme which adaptively creates a direct path.To support it,we present the path selection algorithm,which selects the most efficient path between a direct path and no direct path based on routing hops and traffic load.Through the performance analysis and results,we confirm that the proposed scheme is superior in terms of signaling and packet delivery costs.展开更多
This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts bea...This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.展开更多
In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocatio...In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results.展开更多
Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault qu...Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic ele- ment is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle.展开更多
Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroa...Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroarray data was presented, by combined with evidence acquired from comparative genornic hybridization (CGH) data. Methods: Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify ted genes in CRC. Results: A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions- Our results demonstrated that integration analysis is an effective strategy for mining cancer- associated genes.展开更多
Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,...Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,the nonselfdetector generation efficiency is low;a large number of nonselfdetector is needed for precise detection;low detection rate with various application data sets.Aiming at those problems,a novel radius adaptive based on center-optimized hybrid detector generation algorithm(RACO-HDG)is put forward.To our best knowledge,radius adaptive based on center optimization is first time analyzed and proposed as an efficient mechanism to improve both detector generation and detection rate without significant computation complexity.RACO-HDG works efficiently in three phases.At first,a small number of self-detectors are generated,different from typical NSAs with a large number of self-sample are generated.Nonself-detectors will be generated from those initial small number of self-detectors to make hybrid detection of self-detectors and nonself-detectors possible.Secondly,without any prior knowledge of the data sets or manual setting,the nonself-detector radius threshold is self-adaptive by optimizing the nonself-detector center and the generation mechanism.In this way,the number of abnormal detectors is decreased sharply,while the coverage area of the nonself-detector is increased otherwise,leading to higher detection performances of RACOHDG.Finally,hybrid detection algorithm is proposed with both self-detectors and nonself-detectors work together to increase detection rate as expected.Abundant simulations and application results show that the proposed RACO-HDG has higher detection rate,lower false alarm rate and higher detection efficiency compared with other excellent algorithms.展开更多
The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in spe...The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in specifications and models.This paper proposes a classification algorithm for glass bottles that is divided into two stages,namely the extraction of candidate regions and the classification of classifiers.In the candidate region extraction stage,aiming at the problem of the large time overhead caused by the use of the SIFT(scale-invariant feature transform)descriptor in SS(selective search),an improved feature of HLSN(Haar-like based on SPP-Net)is proposed.An integral graph is introduced to accelerate the process of forming an HBSN vector,which overcomes the problem of repeated texture feature calculation in overlapping regions by SS.In the classification stage,the improved SS algorithm is used to extract target regions.The target regions are merged using a non-maximum suppression algorithm according to the classification scores of the respective regions,and the merged regions are classified using the trained classifier.Experiments demonstrate that,compared with the original SS,the improved SS algorithm increases the calculation speed by 13.8%,and its classification accuracy is 89.4%.Additionally,the classification algorithm for glass bottles has a certain resistance to noise.展开更多
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted...In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition.展开更多
The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with...The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with Projection Pursuit dimension reduction based on Immune Clonal Selection Algorithm (ICSA-PP) is proposed in this paper. Projection pursuit strategy can maintain consistent Euclidean distances between points in the low-dimensional embeddings where the ICSA is used to search optimizing projection direction. The proposed algorithm can converge quickly with less iteration to reduce dimension of some high-dimensional datasets, and in which space, K-mean clustering algorithm is used to partition the reduced data. The experiment results on UCI data show that the presented method can search quicker to optimize projection direction than Genetic Algorithm (GA) and it has better clustering results compared with traditional linear dimension reduction method for Principle Component Analysis (PCA).展开更多
To relieve traliic overhead induced by active probing based methods, a new fault detection method, whose key is to divide the detection process into multiple stages, is proposed in this paper. During each stage, only ...To relieve traliic overhead induced by active probing based methods, a new fault detection method, whose key is to divide the detection process into multiple stages, is proposed in this paper. During each stage, only a small region of the network is detected by using a small set of probes. Meanwhile, it also ensures that the entire network can be covered alter multiple detection stages. This method can guarantee that the traffic used by probes during each detection stage is small sufficiently so that the network can operate without severe disturbance from probes. Several simulation results verify the effectiveness of the proposed method.展开更多
文摘In this paper,negative selection and genetic algorithms are combined and an improved bi-objective optimization scheme is presented to achieve optimized negative selection algorithm detectors.The main aim of the optimal detector generation technique is maximal nonself space coverage with reduced number of diversified detectors.Conventionally,researchers opted clonal selection based optimization methods to achieve the maximal nonself coverage milestone;however,detectors cloning process results in generation of redundant similar detectors and inefficient detector distribution in nonself space.In approach proposed in the present paper,the maximal nonself space coverage is associated with bi-objective optimization criteria including minimization of the detector overlap and maximization of the diversity factor of the detectors.In the proposed methodology,a novel diversity factorbased approach is presented to obtain diversified detector distribution in the nonself space.The concept of diversified detector distribution is studied for detector coverage with 2-dimensional pentagram and spiral self-patterns.Furthermore,the feasibility of the developed fault detection methodology is tested the fault detection of induction motor inner race and outer race bearings.
基金Supported by the Basic Scientific Research Projects of the Central University of China(ZXH2010D010)the National Natural Science Foundation of China(60979021/F01)~~
文摘In order to ease congestion and ground delays in major hub airports, an aircraft taxiing scheduling optimization model is proposed with schedule time as the object function. In the new model, the idea of a classical job shop-schedule problem is adopted and three types of special aircraft-taxi conflicts are considered in the constraints. To solve such nondeterministic polynomial time-complex problems, the immune clonal selection algorithm(ICSA) is introduced. The simulation results in a congested hour of Beijing Capital International Airport show that, compared with the first-come-first-served(FCFS) strategy, the optimization-planning strategy reduces the total scheduling time by 13.6 min and the taxiing time per aircraft by 45.3 s, which improves the capacity of the runway and the efficiency of airport operations.
文摘A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50875056)
文摘To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effectively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness.
基金supported in part by the National High-tech Research and Development Program (863 Program) of China under Grant No. 2009AA01Z210, No. 2009AA01Z250 and No. 2008AA01A324support from Guangdong Ministry of Education Industry-Academia-Research project No. 2009B090300315EU FP7 Project (INFSO-ICT- 215549)
文摘To address cross-ISP traffic problem caused by BitTorrent,we present our design and evaluation of a proximity-aware BitTorrent system. In our approach,clients generate global proximity-aware information by using landmark clustering;the tracker uses this proximity to maintain all peers in an orderly way and hands back a biased subset consisting of the peers who are physically closest to the requestor. Our approach requires no co-operation between P2P users and their Internet infra structures,such as ISPs or CDNs,no constantly path monitoring or probing their neighbors. The simulation results show that our approach can not only reduce unnecessary cross-ISP traffic,but also allow downloadsing fast.
基金supported by National Science Council under Grant No.101-2221-E-029-020-MY3
文摘Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be implemented. Under the consideration of cooperative communication systems, the scenario includes one information source, M relay stations and N destinations. This work proposes a relay selection algorithm in the Raleigh fading channel. Based on the exhaustive search method, easily to realize, the optimal selection scheme can be found with a highly complicated calculation. In order to reduce the computational complexity, an approximate optimal solution with a greedy algorithm applied for the relay station selection is proposed. With different situations of the communication systems, the performance evaluation obtained by both the proposed algorithm and the exhaustive search algorithm are given for comparison. It shows the proposed algorithm could provide a solution approach to the optimal one.
基金Sponsored by the National Natural Science Foundation of China ( Grant No. 60671049 ), the Subject Chief Foundation of Harbin ( Grant No.2003AFXXJ013), the Education Department Research Foundation of Heilongjiang Province(Grant No.10541044,1151G012) and the Postdoctor Founda-tion of Heilongjiang(Grant No.LBH-Z05092).
文摘A real-valued negative selection algorithm with good mathematical foundation is presented to solve some of the drawbacks of previous approach. Specifically, it can produce a good estimate of the optimal number of detectors needed to cover the non-self space, and the maximization of the non-self coverage is done through an optimization algorithm with proven convergence properties. Experiments are performed to validate the assumptions made while designing the algorithm and to evaluate its performance.
文摘The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificial immune system.A key element of the NSA is its great dependency on the random detectors in monitoring for any abnormalities.However,these detectors have limited performance.Redundant detectors are generated,leading to difficulties for detectors to effectively occupy the non-self space.To alleviate this problem,we propose the nature-inspired metaheuristic cuckoo search(CS),a stochastic global search algorithm,which improves the random generation of detectors in the NSA.Inbuilt characteristics such as mutation,crossover,and selection operators make the CS attain global convergence.With the use of Lévy flight and a distance measure,efficient detectors are produced.Experimental results show that integrating CS into the negative selection algorithm elevated the detection performance of the NSA,with an average increase of 3.52%detection rate on the tested datasets.The proposed method shows superiority over other models,and detection rates of 98%and 99.29%on Fisher’s IRIS and Breast Cancer datasets,respectively.Thus,the generation of highest detection rates and lowest false alarm rates can be achieved.
基金This work is supported by Shanghai Science and Technology Planning Project(Project No.20040501200).
文摘In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power system oscillations through the excitation control.This paper proposes a novel method to obtain optimal parameter values for Power System Stabilizer(PSS)to suppress low-frequency oscillations in the marine electric power system.In this paper,a newly developed immune clone selection algorithm was improved from the three aspects of the adaptive incentive degree,vaccination,and adaptive mutation strategies.Firstly,the typical PSS implementation type of leader-lag structure was adopted and the objective function was set in the optimization process.The performance of PSS tuned by improved immune clone selection algorithm was compared with PSS tuned by basic immune clone selection algorithm(ICSA)under various operating conditions and disturbances.Then,an improved immune clone selection algorithm(IICSA)optimization technique was implemented on two test systems for test purposes.Based on the simulations,it is found that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power system stabilizers.Moreover,the proposed approach improves the stability and dynamic performance under various loads conditions and disturbances of the marine electric power system.
基金MKE(the Ministry of Knowledge Economy),Korea,under the Convergence-ITRC support program(NIPA-2011C6150-1101-0004)supervised by the NIPA(National IT Industry Promotion Agency)KCC(Korea Communications Commis-sion),Korea,under the R&D program supervised by the KCA(Korea Communications Agency)(KCA-2011-08913-05001)
文摘Current mobility management schemes usually represent centralized or hierarchical architectures,which force data traffic to be processed by a centralized mobility anchor.This allows the mobile node(MN)to be reachable anywhere and provides an efficient method for seamless session continuity.However,all of the signal messages and data traffic converge on particular mobility anchor,which causes excessive signaling and traffic at the centralized mobility anchor and single point of failure issues as data traffic increases.To overcome these limitations and handle increasing data traffic,the distributed mobility management(DMM)scheme has emerged as an alternative solution.Although previous researches have been conducted on DMM support,because their schemes employ an unconditional way to make direct paths after handover,they have some drawbacks,such as several signaling and chain of tunneling problems.Therefore,this paper introduces a new DMM scheme which adaptively creates a direct path.To support it,we present the path selection algorithm,which selects the most efficient path between a direct path and no direct path based on routing hops and traffic load.Through the performance analysis and results,we confirm that the proposed scheme is superior in terms of signaling and packet delivery costs.
基金supported by the National Natural Science Foundation of China under Grant No.61901523 and No.62071488.
文摘This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.
文摘In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results.
基金The 11th Five-year National Defense Preliminary Research Projects (B0520060455)
文摘Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic ele- ment is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.61373057)a grant from the Zhejiang Provincial Natural Science Foundation of China(Grant No.Y1110763)
文摘Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroarray data was presented, by combined with evidence acquired from comparative genornic hybridization (CGH) data. Methods: Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify ted genes in CRC. Results: A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions- Our results demonstrated that integration analysis is an effective strategy for mining cancer- associated genes.
基金supported by the National Natural Science Foundation of China(61502423,62072406)the Natural Science Foundation of Zhejiang Provincial(LY19F020025)the Major Special Funding for“Science and Technology Innovation 2025”in Ningbo(2018B10063)。
文摘Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,the nonselfdetector generation efficiency is low;a large number of nonselfdetector is needed for precise detection;low detection rate with various application data sets.Aiming at those problems,a novel radius adaptive based on center-optimized hybrid detector generation algorithm(RACO-HDG)is put forward.To our best knowledge,radius adaptive based on center optimization is first time analyzed and proposed as an efficient mechanism to improve both detector generation and detection rate without significant computation complexity.RACO-HDG works efficiently in three phases.At first,a small number of self-detectors are generated,different from typical NSAs with a large number of self-sample are generated.Nonself-detectors will be generated from those initial small number of self-detectors to make hybrid detection of self-detectors and nonself-detectors possible.Secondly,without any prior knowledge of the data sets or manual setting,the nonself-detector radius threshold is self-adaptive by optimizing the nonself-detector center and the generation mechanism.In this way,the number of abnormal detectors is decreased sharply,while the coverage area of the nonself-detector is increased otherwise,leading to higher detection performances of RACOHDG.Finally,hybrid detection algorithm is proposed with both self-detectors and nonself-detectors work together to increase detection rate as expected.Abundant simulations and application results show that the proposed RACO-HDG has higher detection rate,lower false alarm rate and higher detection efficiency compared with other excellent algorithms.
基金Research Foundation of Education Bureau of Jilin Province(JJKN20190710KJ)Science and Technology Innovation Development Plan Project of Jilin city(20190302202).
文摘The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in specifications and models.This paper proposes a classification algorithm for glass bottles that is divided into two stages,namely the extraction of candidate regions and the classification of classifiers.In the candidate region extraction stage,aiming at the problem of the large time overhead caused by the use of the SIFT(scale-invariant feature transform)descriptor in SS(selective search),an improved feature of HLSN(Haar-like based on SPP-Net)is proposed.An integral graph is introduced to accelerate the process of forming an HBSN vector,which overcomes the problem of repeated texture feature calculation in overlapping regions by SS.In the classification stage,the improved SS algorithm is used to extract target regions.The target regions are merged using a non-maximum suppression algorithm according to the classification scores of the respective regions,and the merged regions are classified using the trained classifier.Experiments demonstrate that,compared with the original SS,the improved SS algorithm increases the calculation speed by 13.8%,and its classification accuracy is 89.4%.Additionally,the classification algorithm for glass bottles has a certain resistance to noise.
基金Supported by the National Natural Science Foundation of China(61701029)Basic Research Foundation of Beijing Institute of Technology(20170542008)Industry-University Research Innovation Foundation of the Science and Technology Development Center of the Ministry of Education(2018A02012)。
文摘In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition.
基金Supported by the National Natural Science Foundation of China (No. 61003198, 60703108, 60703109, 60702062,60803098)the National High Technology Development 863 Program of China (No. 2008AA01Z125, 2009AA12Z210)+1 种基金the China Postdoctoral Science Foundation funded project (No. 20090460093)the Provincial Natural Science Foundation of Shaanxi, China (No. 2009JQ8016)
文摘The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with Projection Pursuit dimension reduction based on Immune Clonal Selection Algorithm (ICSA-PP) is proposed in this paper. Projection pursuit strategy can maintain consistent Euclidean distances between points in the low-dimensional embeddings where the ICSA is used to search optimizing projection direction. The proposed algorithm can converge quickly with less iteration to reduce dimension of some high-dimensional datasets, and in which space, K-mean clustering algorithm is used to partition the reduced data. The experiment results on UCI data show that the presented method can search quicker to optimize projection direction than Genetic Algorithm (GA) and it has better clustering results compared with traditional linear dimension reduction method for Principle Component Analysis (PCA).
文摘To relieve traliic overhead induced by active probing based methods, a new fault detection method, whose key is to divide the detection process into multiple stages, is proposed in this paper. During each stage, only a small region of the network is detected by using a small set of probes. Meanwhile, it also ensures that the entire network can be covered alter multiple detection stages. This method can guarantee that the traffic used by probes during each detection stage is small sufficiently so that the network can operate without severe disturbance from probes. Several simulation results verify the effectiveness of the proposed method.