期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Development of T. aestivum L.eH. californicum Alien Chromosome Lines and Assignment of Homoeologous Groups of Hordeum californicum Chromosomes 被引量:2
1
作者 Yuhui Fang Jingya Yuan +8 位作者 Zhangjun Wang Haiyan Wang Jin Xiao Zhixi Yang Ruiqi Zhang Zengjun Qi Weigang Xu Lin Hu Xiu-E Wang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2014年第8期439-447,共9页
Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chin... Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring (CS)-H. californicum amphidiploid (2n = 6x = 56, AABBDDHH) was established. By genomic in situ hybridization (GISH) and multicolor fluorescent in situ hybridization (FISH) using repetitive DNA clones (pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheat--alien chromosome lines, including four disomic addition lines (DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines (MtH7L, MtHIS, MtH1L, DtH6S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line (DSH4) and one translocation line (TH7S/1BL), were identified from the progenies derived from the crosses of CS-H. californicum amphidiploid with common wheat varieties. A total of 482 EST (expressed sequence tag) or SSR (simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2, H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5Hc, 2He, 6Hc, 3Hc and 1Hc, respectively. The chromosomes H1 and H6 were designated as 7Hc and 4Hc, respectively, by referring to SSR markers located on rye chromosomes. 展开更多
关键词 Hordeum californicum Chinese Spring--H. californicum amphiploid GISH/FISH alien chromosome lines Homoeologous group
原文传递
Development of EST-PCR markers specific to the long arm of chromosome 6V of Dasypyrum villosum 被引量:2
2
作者 SUN Hao-jie SONG Jing-jing +7 位作者 XIAO Jin XU Tao WEI Xing YUAN Chun-xia CAO Ai-zhong XING Li-ping WANG Hai-yan WANG Xiu-e 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第8期1720-1726,共7页
Expressed sequence tags-derived polymerase chain reaction(EST-PCR) molecular markers specific for alien chromosomes can be used to not only monitor the introgressed alien chromatin in wheat background, but also provid... Expressed sequence tags-derived polymerase chain reaction(EST-PCR) molecular markers specific for alien chromosomes can be used to not only monitor the introgressed alien chromatin in wheat background, but also provide the evidence of the syntenic relationship between homoeologous chromosomes. In the present study, in order to develop high density and evenly distributed molecular markers specific for chromosome 6 VL of Dasypyrum villosum, 297 primer pairs were designed based on the expressed sequence tags(EST) sequences, which were previously mapped in different bins of the long arms of wheat homoeologous 6 AL, 6 BL, and 6 DL. By using the Triticum aestivum, D. villosum, T. durum-D. villosum amphiploid, and T. aestivum-D. villosum alien chromosome lines involving chromosome 6 V, it was found that 32(10.77%) primers could amplify specific bands for chromosome 6 V, and 31 could be allocated to chromosome arm 6 VL. These 6 VL specific markers provided efficient tools for the characterization of structural variation involving the chromosome 6 VL in common wheat background as well as for the selection of useful genes located on 6 VL in breeding programs. 展开更多
关键词 Dasypyrum villosum molecular marker common wheat alien chromosome line
下载PDF
Research progress in BYDV resistance genes derived from wheat and its wild relatives 被引量:12
3
作者 Zengyan Zhang Zhishan Lin Zhiyong Xin 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2009年第9期567-573,共7页
Barley yellow dwarf virus (BYDV) may cause a serious disease affecting wheat worldwide. True resistance to BYDV is not naturally found in wheat. BYDV resistance genes are found in more than 10 wild relative species ... Barley yellow dwarf virus (BYDV) may cause a serious disease affecting wheat worldwide. True resistance to BYDV is not naturally found in wheat. BYDV resistance genes are found in more than 10 wild relative species belonging to the genera of Thinopyrum, Agropyron, Elymus, Leymus, Roegneria, and Psathyrostachy. Through wide crosses combining with cell culture, use ofph mutants, or irradiation, 3 BYDV resistance genes in Th. intermedium, including Bdv2, Bdv3 and Bdv4, were introgressed into common wheat background. Various wheat-Th, intermedium addition and substitution, translocation lines with BYDV-resistance were developed and characterized, such as 7D-TAi#1 (bearing Bdv2), 7B-7Ai#1, 7D-7E (beating Bdv3), and 2D-2Ai-2 (bearing Bdv4) translocations. Three wheat varieties with BYDV resistance from Th. intermedium were developed and released in Australia and China, respectively. In addition, wheat-Agropyron cristatum translocation lines, wheat-Ag, pulcherrimum addition and substitution lines, and a wheat-Leymus multicaulis addition line (line24) with different resistance genes were developed. Cytological analysis, morphological markers, biochemical markers, and molecular markers associated with the alien chromatin carrying BYDV resistance genes were identified and applied to determine the presence of alien, chromosomes or segments, size of alien chromosome segments, and compositions of the alien chromosomes. Furthermore, some resistance-related genes, such as RGA, P450, HSP70, protein kinases, centrin, and transducin, were identified, which expressed specifically in the resistance translocation lines with Bdv2. These studies lay the foundations for developing resistant wheat cultivars and unraveling the resistance mechanism against BYDV. 展开更多
关键词 wheat (Triticum aestivum) BYDV resistance alien chromosome INTROGRESSION identification resistance-related gene
原文传递
Establishment of a Multi-color Genomic in situ Hybridization Technique to Simultaneously Discriminate the Three Interspecific Hybrid Genomes in Gossypium 被引量:4
4
作者 Bing Guan Kai Wang Bao-Liang Zhou Wang-Zhen Guo Tian-Zhen Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2008年第3期345-351,共7页
To identify alien chromosomes in recipient progenies and to analyze genome components in polyploidy, a genomic in situ hybridization (GISH) technique that is suitable for cotton was developed using increased stringe... To identify alien chromosomes in recipient progenies and to analyze genome components in polyploidy, a genomic in situ hybridization (GISH) technique that is suitable for cotton was developed using increased stringency conditions. The increased stringency conditions were a combination of the four factors in the following optimized state: 100:1 ratio of blocking DNA to probe, 60% formamide wash solution, 43 ℃ temperature wash and a 13 min wash. Under these specific conditions using gDNA from Gossypium sturtianum (C1 C1 ) as a probe, strong hybridization signals were only observed on chromosomes from the C1 genome in somatic cells of the hybrid F1 (G. hirsutum x G. sturtianum) (AtDtC1). Therefore, GISH was able to discriminate parental chromosomes in the hybrid. Further, we developed a multi-color GISH to simultaneously discriminate the three genomes of the above hybrid. The results repeatedly displayed the three genomes, At, Dt, and C1, and each set of chromosomes with a unique color, making them easy to identify. The power of the multi-color GISH was proven by analysis of the hexaploid hybrid F1 (G. hirsutum x G. australe) (AtAtDtDtG2G2). We believe that the powerful multi-color GISH technique could be applied extensively to analyze the genome component in polyploidy and to identify alien chromosomes in the recipient progenies. 展开更多
关键词 alien chromosome cotton discrimination genome interspecific hybrid multi-color genomic in situ hybridization stringency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部