Biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate-co-lactate) (PBTL) were prepared via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO) and poly(L-lactic ...Biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate-co-lactate) (PBTL) were prepared via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO) and poly(L-lactic acid) oligomer (OLLA). The effects of polymerization time and temperature, as well as aliphatic/aromatic moiety ratio on the physical and thermal properties were investigated. The largest molecular weight of the copolyesters was up to 64100 with molecular weight distribution index of 2.09 when the polycondensation was carried out at 230℃ for 6 h. DSC, XRD, DMA and TGA analysis clearly indicated that the degree of crystallinity, glass-transition temperature, melting point, decomposition temperature, tensile strength, elongation and Young's modulus were influenced by the ratio between TPA and OLLA in the final copolyesters. Hydrolytic degradation results demonstrated that the incorporation of biodegradable lactate moieties into the aromatic polyester could efficiently improve hydrolytic degradability of the copolymer even though it still had many aromatic units in the main chains.展开更多
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and...The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
In situ melt polycondensation was proposed to prepare biodegradable aliphatic-aromatic copolyesters/nano-SiO2 hybrids based on terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO)...In situ melt polycondensation was proposed to prepare biodegradable aliphatic-aromatic copolyesters/nano-SiO2 hybrids based on terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO) and nano-SiO2. TEM and FT-IR characterizations confirmed that TPA, OLLA and BDO copolymerized to obtain biodegradable copolyesters, poly(butylene terepbthalate-co-lactate) (PBTL), and the abundant hydroxyl groups on the surface of nano-SiO2 provided potential sites for in situ grafting with the simultaneous resulted PBTL. The nano-SiO2 particles were chemically wrapped with PBTL to form PBTL/nano- SiO2 hybrids. Due to the good dispersion and interfacial adhesion of nano-SiO2 particles with the copolyester matrix, the tensile strength and the Young's modulus increased from 5.4 and 5.6 MPa for neat PBTL to 16 and 390 MPa for PBTL/nano-SiO2 hybrids with 5 wt.% nano-SiO2, respectively. The mechanical properties of PBTL/nano-SiO2 hybrids were substantially improved.展开更多
A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic...A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BG) and ethylene glycol (EG) through direct esterification and polycondensation. The sequence structure and crystallinity of the copolyester were investigated by 1H NMR spectroscopy and the wide-angle X-ray diffractometry (WAXD). The analytical results showed that the PBATE copolyester was a random copolymer and the composition of PBATE copolyester was almost consistent with the feed molar ratios. The crystal structure of PBATE copolyester belonged to the triclinic crystalline system; The variation in melting point of the synthesized PBATE copolyester agreed well with the estimation obtained by the Flory equation and was applicable to the random copolymer.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promisi...The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.展开更多
Several novel aromatic liquid crystalline copolyesters with regular sequence structure were prepared by melt Sehotten-Baumann polycondensation via complex monomer. Polarizing microscope with hot stage, thermal analysi...Several novel aromatic liquid crystalline copolyesters with regular sequence structure were prepared by melt Sehotten-Baumann polycondensation via complex monomer. Polarizing microscope with hot stage, thermal analysis and X-ray diffraction were used to investigate the structure and properties of the copolyesters. The effects of structural units, such as flexible spacer, noncolinear meta-linked phenylene unit, crankshaft unit, kink with flexible bridging unit and various substituted benzene rings on melting temperature of aromatic copolyesters were studied and discussed on the basis of crystalline structure of the polymers.展开更多
A series of main chain liquid crystal aromatic copolyesters with X-shaped and rod-shaped mesogenic units were synthesized via solution condensation polymerizations of 4,4'-(alpha,omega-octanedioyloxy)-dibenzoyl di...A series of main chain liquid crystal aromatic copolyesters with X-shaped and rod-shaped mesogenic units were synthesized via solution condensation polymerizations of 4,4'-(alpha,omega-octanedioyloxy)-dibenzoyl dichlorides with 2,5-bis(p-octanoxy benzoyloxy)-hydroquinone and diphenol. All of the copolyesters showed thermotropic liquid crystalline behaviors through observations using DSC, polarized microscopy and X-ray diffraction. The melting point (T-m) and the isotropization temperature (T-i) change regularly with varying the content of diphenol unit in the copolymers.展开更多
The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The .results showed that the corresponding separation ...The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The .results showed that the corresponding separation factors were considerably larger than those of the traditional solvents (Benzene+Hexane+sulfolane), and that the ionic liquids could be used as novel solvents for the separation of aromatics from hydrocarbon mixtures. The key parameters governing the ability of ionic liquids for separating aromatics from hydrocarbon sources were investigated. It was found that the effectiveness of the ionic liquids, based on the same anion, changed in the cation order of [BIqu]^+〈 [BPy]^+〈 [BMIM]^+. The selectivity of the ionic liquid toward aromatics decreased apparently with the increasing length of the substituted alkyl chain of its cationic head ring. The separation factors, based on the same cation, changed in the anion order of [Tf2N]^-〈[PF6]^-〈[BF4]^-〈[C2H5SO4]^-. The solubilities of the aromatics were greater in the ionic liquids based on the former three anions than that in the ionic liquids involving [C2H5SO4]^-.展开更多
Our previous research showed that aliphatic amines were put in order of high reactivity as “ethylamine > ammonia > t-butylamine > diethylamine” on the aromatic nucleophilic substitution of 1-dimetylamino-2,...Our previous research showed that aliphatic amines were put in order of high reactivity as “ethylamine > ammonia > t-butylamine > diethylamine” on the aromatic nucleophilic substitution of 1-dimetylamino-2,4-bis(trifluoroacetyl)-naphthalene 1 in acetonitrile. The DFT calculation study (B3LYP/6-31G* with solvation model) for the reactions of 1 with above four amines rationally explained the difference of each amines reactivity based on the energies of their Meisenheimer complexes 3 which are assumed to formed as the reaction intermediates in the course of the reaction giving the corresponding N-N exchange products 2. Intramolecular hydrogen bond between amino proton in 1-amino group and carbonyl oxygen in 2-trifluoroacetyl group stabilizes Meisenheimer complexes 3 effectively, and accelerates the substitution reaction from 1 to 2. Our calculation results also predicted that the above order of amines is also true if less polar toluene is used as a solvent instead of acetonitrile even though more enhanced conditions are required.展开更多
Straightforward etherification of benzyl alcohols (1) via intermolecular dehydration can be efficiently catalyzed by sodium bisulfite under solvent-free conditions. In the presence of 0.3 mol% or 0.6 mol% amount of ...Straightforward etherification of benzyl alcohols (1) via intermolecular dehydration can be efficiently catalyzed by sodium bisulfite under solvent-free conditions. In the presence of 0.3 mol% or 0.6 mol% amount of sodium bisulfite, symmetric and unsymmetric ethers are prepared from the corresponding alcohols in high yields (up to 95%). Etherification of benzhydryl alcohols is also discussed.展开更多
A series organosoluble and heterocyclic poly(ether-amide)s (PEA)s were synthesized from a new diamine containing pyridine moiety and four aliphatic-aromatic dicarboxylic acids by direct polycondensation reactions....A series organosoluble and heterocyclic poly(ether-amide)s (PEA)s were synthesized from a new diamine containing pyridine moiety and four aliphatic-aromatic dicarboxylic acids by direct polycondensation reactions. Dicarboxilic acids 4a-4d containing ether groups were synthesized in two step reactions. At first, dialdehydes 3a-3d were synthesized from four dibromo alkanes la-ld and 4-hydroxybenzaldehyde 2, then dicarboxilic acids 4a-4d were synthesized from dialdehydes 3a-3d and malonic acid in a solvent free reaction. On the other hand, the new diamine 8 containing pyridine ring was synthesized in two step reactions. The structures of synthesized monomers and polymers were proven by FTIR, NMR spectroscopy and elemental analysis. Also all of the above polymers were fully characterized by inherent viscosity, solubility tests, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The resulted PEAs have shown good inherent viscosities, solubility and thermal properties.展开更多
基金supported by the Natural Science Foundation of Ningbo(No.2007A610030)Scientific Special Fund of Zhejiang Province(No.2008C11092-2)
文摘Biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate-co-lactate) (PBTL) were prepared via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO) and poly(L-lactic acid) oligomer (OLLA). The effects of polymerization time and temperature, as well as aliphatic/aromatic moiety ratio on the physical and thermal properties were investigated. The largest molecular weight of the copolyesters was up to 64100 with molecular weight distribution index of 2.09 when the polycondensation was carried out at 230℃ for 6 h. DSC, XRD, DMA and TGA analysis clearly indicated that the degree of crystallinity, glass-transition temperature, melting point, decomposition temperature, tensile strength, elongation and Young's modulus were influenced by the ratio between TPA and OLLA in the final copolyesters. Hydrolytic degradation results demonstrated that the incorporation of biodegradable lactate moieties into the aromatic polyester could efficiently improve hydrolytic degradability of the copolymer even though it still had many aromatic units in the main chains.
基金supported by the National Natural Science Foundation of China(22125802,22078010).
文摘The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金support from the Natural Science Foundation of Ningbo(No.2007A610030)Science and Technology Department of Zhejiang Province(No.2008C11092-2)
文摘In situ melt polycondensation was proposed to prepare biodegradable aliphatic-aromatic copolyesters/nano-SiO2 hybrids based on terephthalic acid (TPA), poly(L-lactic acid) oligomer (OLLA), 1,4-butanediol (BDO) and nano-SiO2. TEM and FT-IR characterizations confirmed that TPA, OLLA and BDO copolymerized to obtain biodegradable copolyesters, poly(butylene terepbthalate-co-lactate) (PBTL), and the abundant hydroxyl groups on the surface of nano-SiO2 provided potential sites for in situ grafting with the simultaneous resulted PBTL. The nano-SiO2 particles were chemically wrapped with PBTL to form PBTL/nano- SiO2 hybrids. Due to the good dispersion and interfacial adhesion of nano-SiO2 particles with the copolyester matrix, the tensile strength and the Young's modulus increased from 5.4 and 5.6 MPa for neat PBTL to 16 and 390 MPa for PBTL/nano-SiO2 hybrids with 5 wt.% nano-SiO2, respectively. The mechanical properties of PBTL/nano-SiO2 hybrids were substantially improved.
文摘A series of biodegradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-butylene adipate-co- ethylene terephthalate-co-ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4-butanediol (BG) and ethylene glycol (EG) through direct esterification and polycondensation. The sequence structure and crystallinity of the copolyester were investigated by 1H NMR spectroscopy and the wide-angle X-ray diffractometry (WAXD). The analytical results showed that the PBATE copolyester was a random copolymer and the composition of PBATE copolyester was almost consistent with the feed molar ratios. The crystal structure of PBATE copolyester belonged to the triclinic crystalline system; The variation in melting point of the synthesized PBATE copolyester agreed well with the estimation obtained by the Flory equation and was applicable to the random copolymer.
基金Supported by the National Natural Science Foundation of China(21406006,21576003)the Science and Technology Program of Beijing Municipal Education Commission(KM201510005010)+1 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20150309)the China Postdoctoral Science Foundation funded project(2015M580954)
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.
文摘Several novel aromatic liquid crystalline copolyesters with regular sequence structure were prepared by melt Sehotten-Baumann polycondensation via complex monomer. Polarizing microscope with hot stage, thermal analysis and X-ray diffraction were used to investigate the structure and properties of the copolyesters. The effects of structural units, such as flexible spacer, noncolinear meta-linked phenylene unit, crankshaft unit, kink with flexible bridging unit and various substituted benzene rings on melting temperature of aromatic copolyesters were studied and discussed on the basis of crystalline structure of the polymers.
基金The work was supported by the National Natural Science Foundation of China.
文摘A series of main chain liquid crystal aromatic copolyesters with X-shaped and rod-shaped mesogenic units were synthesized via solution condensation polymerizations of 4,4'-(alpha,omega-octanedioyloxy)-dibenzoyl dichlorides with 2,5-bis(p-octanoxy benzoyloxy)-hydroquinone and diphenol. All of the copolyesters showed thermotropic liquid crystalline behaviors through observations using DSC, polarized microscopy and X-ray diffraction. The melting point (T-m) and the isotropization temperature (T-i) change regularly with varying the content of diphenol unit in the copolymers.
基金The authors thank the National Natural Science Foundation of China(20276037)the CNPC Innovation Foundation(03E7016)for financial support.
文摘The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The .results showed that the corresponding separation factors were considerably larger than those of the traditional solvents (Benzene+Hexane+sulfolane), and that the ionic liquids could be used as novel solvents for the separation of aromatics from hydrocarbon mixtures. The key parameters governing the ability of ionic liquids for separating aromatics from hydrocarbon sources were investigated. It was found that the effectiveness of the ionic liquids, based on the same anion, changed in the cation order of [BIqu]^+〈 [BPy]^+〈 [BMIM]^+. The selectivity of the ionic liquid toward aromatics decreased apparently with the increasing length of the substituted alkyl chain of its cationic head ring. The separation factors, based on the same cation, changed in the anion order of [Tf2N]^-〈[PF6]^-〈[BF4]^-〈[C2H5SO4]^-. The solubilities of the aromatics were greater in the ionic liquids based on the former three anions than that in the ionic liquids involving [C2H5SO4]^-.
文摘Our previous research showed that aliphatic amines were put in order of high reactivity as “ethylamine > ammonia > t-butylamine > diethylamine” on the aromatic nucleophilic substitution of 1-dimetylamino-2,4-bis(trifluoroacetyl)-naphthalene 1 in acetonitrile. The DFT calculation study (B3LYP/6-31G* with solvation model) for the reactions of 1 with above four amines rationally explained the difference of each amines reactivity based on the energies of their Meisenheimer complexes 3 which are assumed to formed as the reaction intermediates in the course of the reaction giving the corresponding N-N exchange products 2. Intramolecular hydrogen bond between amino proton in 1-amino group and carbonyl oxygen in 2-trifluoroacetyl group stabilizes Meisenheimer complexes 3 effectively, and accelerates the substitution reaction from 1 to 2. Our calculation results also predicted that the above order of amines is also true if less polar toluene is used as a solvent instead of acetonitrile even though more enhanced conditions are required.
文摘Straightforward etherification of benzyl alcohols (1) via intermolecular dehydration can be efficiently catalyzed by sodium bisulfite under solvent-free conditions. In the presence of 0.3 mol% or 0.6 mol% amount of sodium bisulfite, symmetric and unsymmetric ethers are prepared from the corresponding alcohols in high yields (up to 95%). Etherification of benzhydryl alcohols is also discussed.
文摘A series organosoluble and heterocyclic poly(ether-amide)s (PEA)s were synthesized from a new diamine containing pyridine moiety and four aliphatic-aromatic dicarboxylic acids by direct polycondensation reactions. Dicarboxilic acids 4a-4d containing ether groups were synthesized in two step reactions. At first, dialdehydes 3a-3d were synthesized from four dibromo alkanes la-ld and 4-hydroxybenzaldehyde 2, then dicarboxilic acids 4a-4d were synthesized from dialdehydes 3a-3d and malonic acid in a solvent free reaction. On the other hand, the new diamine 8 containing pyridine ring was synthesized in two step reactions. The structures of synthesized monomers and polymers were proven by FTIR, NMR spectroscopy and elemental analysis. Also all of the above polymers were fully characterized by inherent viscosity, solubility tests, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The resulted PEAs have shown good inherent viscosities, solubility and thermal properties.