为解决常规金属元素分析中存在的成本高、盐分高、难脱离、不稳定等问题,实现土壤样品快速高效分析检测,通过探讨了容器种类、熔剂用量、熔样温度及时间对准确性的影响,以较低价镍坩埚为容器、1.5 g NaOH为熔剂,采用低温短时碱熔法(700...为解决常规金属元素分析中存在的成本高、盐分高、难脱离、不稳定等问题,实现土壤样品快速高效分析检测,通过探讨了容器种类、熔剂用量、熔样温度及时间对准确性的影响,以较低价镍坩埚为容器、1.5 g NaOH为熔剂,采用低温短时碱熔法(700℃,15 min)与热溶法进行样品前处理,电感耦合等离子体发射光谱仪进行检测,建立了低盐低成本碱熔-电感耦合等离子体发射光谱(ICP-OES)法同时测定土壤中铁铝锰钡的方法。方法学研究表明,在仪器最佳测定条件下,Al_(2)O_(3)、Fe_(2)O_(3)、Ba、Mn的检出限分别为0.03%、0.01%、0.01 mg/kg、0.01 mg/kg,相对标准偏差在0.57%~2.7%,且成本低、盐分少、易脱离、稳定性好,结果准确可靠,适用于土壤中金属元素的测定。展开更多
The mechanism of decomposition of calcium inosilicate(CaSiO_3) synthesized through chemical deposition method using analytical reagent NaSiO_3·9H_2O and CaCl_2 during the alkali fusion process using NaOH was inve...The mechanism of decomposition of calcium inosilicate(CaSiO_3) synthesized through chemical deposition method using analytical reagent NaSiO_3·9H_2O and CaCl_2 during the alkali fusion process using NaOH was investigated by Raman spectroscopy in situ,X-ray diffraction and Fourier transform infrared spectrometer(FTIR).The results show that the tetrahedral silica chains within CaSiO_3 are gradually disrupted and transformed into nesosilicate with the isolated SiO_4 tetrahedra at the beginning of the alkali fusion process.The three intermediates including Ca_2SiO_4,Na_2CaSiO_4 and Na_2SiO_3 appear simultaneously in the decomposition of CaSiO_3,while the final products are Ca(OH)_2 and Na_4SiO_4.It can be concluded that there exist two reaction pathways in the alkali fusion process of CaSiO_3:one is ion exchange,the other is in the main form of the framework structure change of silicate.The reaction pathway is led by silicate structure transformation in the alkali fusion process.展开更多
A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in whi...A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in which Na OH/CAS mass ratio,fusion temperature and fusion time were selected as variables,and the conversion ratio of selenium and arsenic as responses.Second-order polynomial models of high significance and 3D response surface plots were constructed to show the relationship between the responses and the variables.Optimum area of >90% selenium conversion ratio and >90% arsenic conversion ratio was obtained by the overlaid contours at Na OH/CAS mass ratio of 0.65-0.75,fusion temperature of 803-823 K and fusion time of 20-30 min.The models are validated by experiments in the optimum area,and the results demonstrate that these models are reliable and accurate in predicting the fusion process.展开更多
The production of MoO3 from Sarcheshmeh molybdenite concentrate via a pyro-hydrometallurgical process was studied.The molybdenite concentrate and sodium carbonate were premixed and fused under air atmosphere.Then the ...The production of MoO3 from Sarcheshmeh molybdenite concentrate via a pyro-hydrometallurgical process was studied.The molybdenite concentrate and sodium carbonate were premixed and fused under air atmosphere.Then the fused products were leached in water and the dissolved molybdenum was recovered as ammonium molybdate.The ammonium molybdate was then calcined to produce mo-lybdic oxide.At the fusion stage,the effect of the mass ratio of carbonate to sulfide on the reaction products and the solubility of the products was investigated.The results show that during the fusion,sodium molybdate and sodium sulfate are the final reaction products and sodium sulfide is detected as an intermediate reaction product.By melting at 850℃with 5wt%excess carbonate,the maximum solubility of the products is obtained.The molybdenum is recovered from the solutions as ammonium molybdate.展开更多
An inorganic cation exchanger, zeolitic material, was synthesized from dehydrated cake, which was discharged from recycling of construction waste soil, using the alkali fusion method. The waste clay was mixed with NaO...An inorganic cation exchanger, zeolitic material, was synthesized from dehydrated cake, which was discharged from recycling of construction waste soil, using the alkali fusion method. The waste clay was mixed with NaOH powder (the weight ratio of NaOH/waste clay = 1.0) and then heated at 300°C for 1 h to make a fused material. This fused material was then added to distilled water, and then heated at 90°C, 120°C, 150°C and 180°C for 12 h in reaction bombs under autogenous pressure in order to synthesize the cation exchanger. As a result, waste cake can be converted into fused material with high solubility, and zeolitic materials can be synthesized from the fused material. A mixture of zeolite-X and hydroxysodalite was synthesized at 90°C and 120°C, hydroxysodalite alone was synthesized at 150°C and 180°C. By increasing the synthesis temperature, the cation exchange capacity (CEC) of the product decreased, and the highest CEC of the product at 90°C, including zeolite-X, was 2.06 mmol/g, which is 64.3% of commercial zeolite-13X (3.2 mmol/g).展开更多
The mining industry produces billions of tons of mine tailings annually.However,because of their lack of economic value,most of the tailings are discarded near the mining sites,typically under water.The primary enviro...The mining industry produces billions of tons of mine tailings annually.However,because of their lack of economic value,most of the tailings are discarded near the mining sites,typically under water.The primary environmental concerns of mine tailings are related to their heavy metal and sulfidic mineral content.Oxidation of sulfidic minerals can produce acid mine drainage that leaches heavy metals into the surrounding water.The management of tailing dams requires expensive construction and careful control,and there is the need for stable,sustainable,and economically viable management technologies.Alkali activation as a solidification/stabilization technology offers an attractive way to deal with mine tailings.Alkali activated materials are hardened,concrete-like structures that can be formed from raw materials that are rich in aluminum and silicon,which fortunately,are the main elements in mining residues.Furthermore,alkali activation can immobilize harmful heavy metals within the structure.This review describes the research on alkali activated mine tailings.The reactivity and chemistry of different minerals are discussed.Since many mine tailings are poorly reactive under alkaline conditions,different pretreatment methods and their effects on the mineralogy are reviewed.Possible applications for these materials are also discussed.展开更多
针对土壤中全硼测定存在难消解、干扰大、易挥发损失等问题,利用碱熔法、微波消解法以及微敞开石墨消解法对土壤全硼进行了测定分析,优化了消解条件,并对三种消解方式进行了验证对比。结果表明:碱熔剂种类以及用量会对碱熔法的准确性造...针对土壤中全硼测定存在难消解、干扰大、易挥发损失等问题,利用碱熔法、微波消解法以及微敞开石墨消解法对土壤全硼进行了测定分析,优化了消解条件,并对三种消解方式进行了验证对比。结果表明:碱熔剂种类以及用量会对碱熔法的准确性造成较大影响,选择KOH作为碱熔剂,并且KOH添加量为3.0 g时,可以获得更准确的结果;加酸种类以及赶酸温度的选择对微波消解法测定结果影响较大,选择加酸体系(5 mL HNO_(3)+1 mL HCl+3 mL HF+1.5 mL H_(3)PO_(4)),赶酸时温度选择170℃,测试效果较好;不同的加酸体系以及消解温度同样会引起微敞开石墨消解法测定结果出现较大误差,选择加酸体系(5 mL HNO_(3)+1 mL HClO_(4)+3 mL HF+1.5 mL H_(3)PO_(4)),消解温度设为170℃,测定结果更可靠。方法验证对比结果表明,碱熔法检出限为0.7 mg/kg,微波消解法检出限为0.9 mg/kg,微敞开石墨消解法检出限为1.0 mg/kg,均满足分析测定的要求。三种消解方式测定的准确度和精密度均符合要求,均可用于土壤全硼的测定,并且实际样品测定结果无显著性差异。三种消解方式优缺点和适用范围不同,实际测试时可以根据样品数量及样品中全硼大致含量等选择具体的消解方式。建立的方法可以为第三次全国土壤普查内业检测提供参考和借鉴。展开更多
基金Project(20112120120003)supported by the Science and Technology Projects of Ministry of Education of ChinaProject(L2014120)supported by the Educational Commission of Liaoning Province,China
文摘The mechanism of decomposition of calcium inosilicate(CaSiO_3) synthesized through chemical deposition method using analytical reagent NaSiO_3·9H_2O and CaCl_2 during the alkali fusion process using NaOH was investigated by Raman spectroscopy in situ,X-ray diffraction and Fourier transform infrared spectrometer(FTIR).The results show that the tetrahedral silica chains within CaSiO_3 are gradually disrupted and transformed into nesosilicate with the isolated SiO_4 tetrahedra at the beginning of the alkali fusion process.The three intermediates including Ca_2SiO_4,Na_2CaSiO_4 and Na_2SiO_3 appear simultaneously in the decomposition of CaSiO_3,while the final products are Ca(OH)_2 and Na_4SiO_4.It can be concluded that there exist two reaction pathways in the alkali fusion process of CaSiO_3:one is ion exchange,the other is in the main form of the framework structure change of silicate.The reaction pathway is led by silicate structure transformation in the alkali fusion process.
基金Project(51234009)supported by the National Natural Science Foundation of ChinaProject(2014DFA90520)supported by International Cooperation Program of Ministry of Science of ChinaProject(2013A100003)supported by the Production,Teaching and Research Program of Guangdong Province,China
文摘A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in which Na OH/CAS mass ratio,fusion temperature and fusion time were selected as variables,and the conversion ratio of selenium and arsenic as responses.Second-order polynomial models of high significance and 3D response surface plots were constructed to show the relationship between the responses and the variables.Optimum area of >90% selenium conversion ratio and >90% arsenic conversion ratio was obtained by the overlaid contours at Na OH/CAS mass ratio of 0.65-0.75,fusion temperature of 803-823 K and fusion time of 20-30 min.The models are validated by experiments in the optimum area,and the results demonstrate that these models are reliable and accurate in predicting the fusion process.
文摘The production of MoO3 from Sarcheshmeh molybdenite concentrate via a pyro-hydrometallurgical process was studied.The molybdenite concentrate and sodium carbonate were premixed and fused under air atmosphere.Then the fused products were leached in water and the dissolved molybdenum was recovered as ammonium molybdate.The ammonium molybdate was then calcined to produce mo-lybdic oxide.At the fusion stage,the effect of the mass ratio of carbonate to sulfide on the reaction products and the solubility of the products was investigated.The results show that during the fusion,sodium molybdate and sodium sulfate are the final reaction products and sodium sulfide is detected as an intermediate reaction product.By melting at 850℃with 5wt%excess carbonate,the maximum solubility of the products is obtained.The molybdenum is recovered from the solutions as ammonium molybdate.
文摘An inorganic cation exchanger, zeolitic material, was synthesized from dehydrated cake, which was discharged from recycling of construction waste soil, using the alkali fusion method. The waste clay was mixed with NaOH powder (the weight ratio of NaOH/waste clay = 1.0) and then heated at 300°C for 1 h to make a fused material. This fused material was then added to distilled water, and then heated at 90°C, 120°C, 150°C and 180°C for 12 h in reaction bombs under autogenous pressure in order to synthesize the cation exchanger. As a result, waste cake can be converted into fused material with high solubility, and zeolitic materials can be synthesized from the fused material. A mixture of zeolite-X and hydroxysodalite was synthesized at 90°C and 120°C, hydroxysodalite alone was synthesized at 150°C and 180°C. By increasing the synthesis temperature, the cation exchange capacity (CEC) of the product decreased, and the highest CEC of the product at 90°C, including zeolite-X, was 2.06 mmol/g, which is 64.3% of commercial zeolite-13X (3.2 mmol/g).
基金financially supported by the project“Steps toward the use of mine tailings in geopolymer materials”funded by the Academy of Finland(No.292526)。
文摘The mining industry produces billions of tons of mine tailings annually.However,because of their lack of economic value,most of the tailings are discarded near the mining sites,typically under water.The primary environmental concerns of mine tailings are related to their heavy metal and sulfidic mineral content.Oxidation of sulfidic minerals can produce acid mine drainage that leaches heavy metals into the surrounding water.The management of tailing dams requires expensive construction and careful control,and there is the need for stable,sustainable,and economically viable management technologies.Alkali activation as a solidification/stabilization technology offers an attractive way to deal with mine tailings.Alkali activated materials are hardened,concrete-like structures that can be formed from raw materials that are rich in aluminum and silicon,which fortunately,are the main elements in mining residues.Furthermore,alkali activation can immobilize harmful heavy metals within the structure.This review describes the research on alkali activated mine tailings.The reactivity and chemistry of different minerals are discussed.Since many mine tailings are poorly reactive under alkaline conditions,different pretreatment methods and their effects on the mineralogy are reviewed.Possible applications for these materials are also discussed.
文摘针对土壤中全硼测定存在难消解、干扰大、易挥发损失等问题,利用碱熔法、微波消解法以及微敞开石墨消解法对土壤全硼进行了测定分析,优化了消解条件,并对三种消解方式进行了验证对比。结果表明:碱熔剂种类以及用量会对碱熔法的准确性造成较大影响,选择KOH作为碱熔剂,并且KOH添加量为3.0 g时,可以获得更准确的结果;加酸种类以及赶酸温度的选择对微波消解法测定结果影响较大,选择加酸体系(5 mL HNO_(3)+1 mL HCl+3 mL HF+1.5 mL H_(3)PO_(4)),赶酸时温度选择170℃,测试效果较好;不同的加酸体系以及消解温度同样会引起微敞开石墨消解法测定结果出现较大误差,选择加酸体系(5 mL HNO_(3)+1 mL HClO_(4)+3 mL HF+1.5 mL H_(3)PO_(4)),消解温度设为170℃,测定结果更可靠。方法验证对比结果表明,碱熔法检出限为0.7 mg/kg,微波消解法检出限为0.9 mg/kg,微敞开石墨消解法检出限为1.0 mg/kg,均满足分析测定的要求。三种消解方式测定的准确度和精密度均符合要求,均可用于土壤全硼的测定,并且实际样品测定结果无显著性差异。三种消解方式优缺点和适用范围不同,实际测试时可以根据样品数量及样品中全硼大致含量等选择具体的消解方式。建立的方法可以为第三次全国土壤普查内业检测提供参考和借鉴。