期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Designing Advanced Liquid Electrolytes for Alkali Metal Batteries:Principles,Progress,and Perspectives
1
作者 Wanming Teng Junxiong Wu +10 位作者 Qinghua Liang Jiaojiao Deng Yu Xu Qiong Liu Biao Wang Ting Ma Ding Nan Jun Liu Baohua Li Qingsong Weng Xiaoliang Yu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期353-380,共28页
The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentia... The ever-growing pursuit of high energy density batteries has triggered extensive efforts toward developing alkali metal(Li,Na,and K)battery(AMB)technologies owing to high theoretical capacities and low redox potentials of metallic anodes.Typically,for new battery systems,the electrolyte design is critical for realizing the battery electrochemistry of AMBs.Conventional electrolytes in alkali ion batteries are generally unsuitable for sustaining the stability owing to the hyper-reactivity and dendritic growth of alkali metals.In this review,we begin with the fundamentals of AMB electrolytes.Recent advancements in concentrated and fluorinated electrolytes,as well as functional electrolyte additives for boosting the stability of Li metal batteries,are summarized and discussed with a special focus on structure-composition-performance relationships.We then delve into the electrolyte formulations for Na-and K metal batteries,including those in which Na/K do not adhere to the Li-inherited paradigms.Finally,the challenges and the future research needs in advanced electrolytes for AMB are highlighted.This comprehensive review sheds light on the principles for the rational design of promising electrolytes and offers new inspirations for developing stable AMBs with high performance. 展开更多
关键词 advanced liquid electrolytes alkali metal batteries concentrated and fluorinated electrolytes functional electrolyte additives
下载PDF
Gallium-based anodes for alkali metal ion batteries 被引量:2
2
作者 Wenjin Yang Xianghua Zhang +4 位作者 Huiteng Tan Dan Yang Yuezhan Feng Xianhong Rui Yan Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期557-571,共15页
Alkali metal ion batteries(AMIBs)are playing an irreplaceable part in the energy revolution,due to their intrinsic advantages of large capacity/power density and abundance of alkali metal ions in the earth’s crust.De... Alkali metal ion batteries(AMIBs)are playing an irreplaceable part in the energy revolution,due to their intrinsic advantages of large capacity/power density and abundance of alkali metal ions in the earth’s crust.Despite their great promise,the inborn deficiencies of commercial graphite and other anodes being researched so far call for the quest of better alternatives that exhibit all-round performance with the balance of energy/power density and cycling stability.Gallium-based materials,with impressive capacity utilization and self-healing ability,provide an anticipated solution to this conundrum.In this review,an overview on the recent progress of gallium-based anodes and their storage mechanism is presented.The current strategies used as engineering solutions to meet the scientific challenges ahead are discussed,in addition to the insightful outlook for possible future study. 展开更多
关键词 Gallium-based materials ANODE alkali metal ion batteries
下载PDF
First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
3
作者 Meiqian Wan Zhongyong Zhang +1 位作者 Shangquan Zhao Naigen Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期428-434,共7页
Based on the density functional theory calculations,we have investigated the feasibility of two-dimensionalβ-GeS monolayer as high-performance anodes for alkali metal ion batteries.The results show that the electrica... Based on the density functional theory calculations,we have investigated the feasibility of two-dimensionalβ-GeS monolayer as high-performance anodes for alkali metal ion batteries.The results show that the electrical conductivity of β-GeS monolayer can be enhanced after adsorbing the alkali metal atoms owing to the semiconductor-to-metal transition.The low diffusion barriers of alkali metal atoms on the β-GeS surface indicate a rapid charge/discharge rate without metal clustering.Moreover,the low average open-circuit voltage(0.211 V)and a high theoretical capacity(1024 mAh·g^(-1))for Na suggest that theβ-GeS monolayer is a promising anode material for Na-ion batteries with high performance. 展开更多
关键词 β-GeS ANODE alkali metal ion batteries FIRST-PRINCIPLES
下载PDF
Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM
4
作者 Huawen Huang Ran Bi +4 位作者 Jie Cui Ming-Ming Hu Li Tian Xianfeng Yang Lei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期405-418,I0009,共15页
Alloyed based anode materials with high theoretical specific capacity and low reaction potential are considered to be highly potential high-energy density anode materials for alkali metal ion batteries(AMIBs).Thus,the... Alloyed based anode materials with high theoretical specific capacity and low reaction potential are considered to be highly potential high-energy density anode materials for alkali metal ion batteries(AMIBs).Thus,the design of alloyed based materials with high electrochemical performance has attracted great attention.Among the numerous characterization methods for guiding electrode materials design,in situ transmission electron microscopy(TEM)gradually plays an irreplaceable role due to its high temporal and spatial resolution in directly observing the change of morphology,crystal structure and element evolutions.Herein,we reviewed the two current research hotspots and mainly focused on the structure design of alloyed based electrode material under the guidance of in situ TEM.Specifically,various nanostructure designs of alloyed based electrode materials with guidance of in situ TEM were employed to solve the key scientific issues of the violent volume change during alloying/dealloying processes for enhanced electrochemical performances.Mainly through introducing buffer space in the electrode material to reduce volume change to improve structural stability,including porous structure(0 D),nanotube structure(1 D),simple hollow structure,yolk-shell structure and some hybrid hollow structures(3 D).Furthermore,the direct guidance of in situ TEM is expected for creating new opportunities to nextgeneration electrode material design for AMIBs. 展开更多
关键词 In situ TEM Alloyed based anode Nanostructure design alkali metal ion batteries
下载PDF
Rational construction of hollow nanoboxes for long cycle life alkali metal ion batteries
5
作者 Zheng Zhang Ying Huang +1 位作者 Xiang Li Zhiming Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第7期46-55,共10页
Hollow nanostructures are extremely attractive in energy storage and show broad application prospects.But the preparation method is accompanied by a complicated process.In this article,the CoZn-based hol-low nanoboxes... Hollow nanostructures are extremely attractive in energy storage and show broad application prospects.But the preparation method is accompanied by a complicated process.In this article,the CoZn-based hol-low nanoboxes with electrochemical synergy are prepared in a simple way.This structure can effectively shorten the transmission distance of ions and electrons,and alleviate the volume expansion during the cycle.In particular,bimetallic oxides are rich in oxygen vacancies,providing more active sites for electro-chemical reactions.In addition,the stepwise oxidation-reduction reaction can also improve the volume change of the electrode material.According to the kinetic analysis and density functional theory(DFT)calculation,it is confirmed that the synergistic effect of the bimetallic oxide can accelerate the reaction kinetics.Based on these characteristics,the electrode exhibits stable cycle performance and long cycle life in alkali metal ion batteries,and can provide reversible capacities of 302.1(LIBs,2000 cycles),172.5(SIBs,10000 cycles)and 109.6(PIBs,5000 cycles)mA h g^(-1)at a current density of 1.0 A g^(-1),respectively.In ad-dition,by assembling(LiCoO_(2)//CoZn-O_(2))and(Na_(3)V_(2)(PO_(4))_(3)//CoZn-O_(2))full-cells,the practical application value is demonstrated.The sharing of this work introduces a simple way to synthesize hollow nanoboxes,and shows excellent electrochemical performance,which can also be expanded in other areas. 展开更多
关键词 Hollow nanoboxes Bimetallic oxides DFT calculation alkali metal ion batteries
原文传递
Anodes for low-temperature rechargeable batteries
6
作者 Jiawei Wang Dandan Yu +2 位作者 Xinyu Sun Hua Wang Jinghong Li 《eScience》 2024年第5期70-90,共21页
Rechargeable alkali metal ion(Li^(+),Na^(+),K^(+))batteries have shown great success in room-temperature energy storage.However,their low-temperature(subzero temperature)applications are still severely restricted,and ... Rechargeable alkali metal ion(Li^(+),Na^(+),K^(+))batteries have shown great success in room-temperature energy storage.However,their low-temperature(subzero temperature)applications are still severely restricted,and the poor electrochemical performance of the anode materials at low temperature serves as a critical obstacle.Therefore,it is urgent to obtain a comprehensive understanding towards the key effects of low temperatures on the performance of the anodes and overview the related improving strategies.In this work,the effects that temperature would impose on electrode performance are firstly discussed.Next,the progress in low-temperature anodes of alkali metal ion batteries is reviewed,by the classification of the reaction types of the anode materials,including intercalation-type anodes,conversion-type anodes,alloy anodes and alkali metal anodes,and corresponding strategies to improve the performance of the anodes are summarized as well.At last,some promising research directions in this field are proposed.This work is intended to shed some light on future exploitation of high-performance low-temperature anode materials. 展开更多
关键词 Anode alkali metal ion batteries Electrode materials GRAPHITE Low temperature
原文传递
Sb nanoparticles encapsulated in N-doped carbon nanotubes as freestanding anodes for high-performance lithium and potassium ion batteries 被引量:4
7
作者 Xiao-Ping Lin Fang-Fang Xue +1 位作者 Zhi-Gang Zhang Qiu-Hong Li 《Rare Metals》 SCIE EI CAS CSCD 2023年第2期449-458,共10页
Sb-based materials with high specific capacity have targeted as an alternative anode material for alkali metal ion batteries.Herein,Sb nanoparticles embedded in hollow porous N-doped carbon nanotubes(Sb@N-C nanotubes)... Sb-based materials with high specific capacity have targeted as an alternative anode material for alkali metal ion batteries.Herein,Sb nanoparticles embedded in hollow porous N-doped carbon nanotubes(Sb@N-C nanotubes)are used as freestanding anode for Li-ion batteries(LIBs)and K-ion batteries(PIBs).The Sb@N-C nanotubes demonstrate exceptional reversible capacity of643 mAh·g^(-1)at 0.1 A·g^(-1)with long cycle stability,as well as outstanding rate performance(219.6 mAh·g^(-1)at10 A·g^(-1))in LIBs.As the anode material of PIBs,they reveal impressive capacity of 325.4 mAh·g^(-1)at 0.1 A·g^(-1).The superior electrochemical properties mainly originate from the novel structure.To be specific,the obtained 3D connected network allows for quick ion and electron migration,and prevents the aggregation of Sb nanoparticles.The hollow porous nanotubes can not only accommodate the volume expansion of Sb nanoparticles during cycling,but also facilitate the infiltration of the electrolyte and reduce the ion diffusion length.This work provides a new insight for designing advanced Sb-based anodes for alkali metal ion batteries. 展开更多
关键词 alkali metal ion batteries Freestanding electrode Hollow porous nanotube Sb@N-C nanotubes
原文传递
Revealing interfacial space charge storage of Li^(+)/Na^(+)/K^(+)by operando magnetometry
8
作者 Xiangkun Li Jie Su +12 位作者 Zhaohui Li Zhiqiang Zhao Fengling Zhang Leqing Zhang Wanneng Ye Qinghao Li Kai Wang Xia Wang Hongsen Li Han Hu Shishen Yan Guo-Xing Miao Qiang Li 《Science Bulletin》 SCIE EI CSCD 2022年第11期1145-1153,共9页
Interfacial space charge storage between ionic and electronic conductor is a promising scheme to further improve energy and power density of alkali metal ion batteries(AMIBs).However,the general behavior of space char... Interfacial space charge storage between ionic and electronic conductor is a promising scheme to further improve energy and power density of alkali metal ion batteries(AMIBs).However,the general behavior of space charge storage in AMIBs has been less investigated experimentally,mostly due to the complicated electrochemical behavior and lack of proper characterization techniques.Here,we use operando magnetometry to verify that in FeSe_(2)AMIBs,abundant Li^(+)/Na^(+)/K^(+)(M^(+))can be stored at M_(2)Se phase while electrons accumulate at Fe nanoparticles,forming interfacial space charge layers.Magnetic and dynamics tests further demonstrate that with increasing ionic radius from Li^(+),Na^(+)to K^(+),the reaction kinetics can be hindered,resulting in limited Fe formation and reduced space charge storage capacity.This work lays solid foundation for studying the complex interfacial effect in electrochemical processes and designing advanced energy storage devices with substantial capacity and considerable power density. 展开更多
关键词 Operando magnetometry Interfacial space charge storage alkali metal ions batteries Kinetics FeSe_(2)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部