The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in...The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.展开更多
The two kinds of rigid polyurethane(PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in we...The two kinds of rigid polyurethane(PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight.The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams.The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples.The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently.Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples.The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.展开更多
The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeri...The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L^-1, SRF of the sludge decreased from 7.85 × 10^12 m·kg^-1 to 2.06× 10^12 m·kg^-1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of "floc mass" was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.展开更多
文摘The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.
基金The key project of "11th Five-Year Plan" in Heilongjiang Province (No. GB06B501-3)
文摘The two kinds of rigid polyurethane(PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight.The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams.The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples.The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently.Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples.The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.
基金Acknowledgements Support for this research is provided by the National Science & Technology Pillar Program of China (No. 212BAC05B02), the National Natural Science Foundation of China (Nos. 5117834 and 5378141), Program for New Century Excellent Talents in University, Ministry of Education of China (Grant No. NCET-13-0180), State Key Laboratory of Pollution Control and Resource Reuse Foundation (Grant No. PCRRF13003), Postdoctoral Science-Research Developmental Foundation of Heilongjiang Province (Grant No. LBH-Q12107), and the National Engineer Research Center of Urban Water Resources.
文摘The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L^-1, SRF of the sludge decreased from 7.85 × 10^12 m·kg^-1 to 2.06× 10^12 m·kg^-1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of "floc mass" was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.