Cobalt nanoparticles(NPs)catalysts are extensively used in heterogeneous catalytic reactions,and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst'...Cobalt nanoparticles(NPs)catalysts are extensively used in heterogeneous catalytic reactions,and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst's surface structures and morphologies are sensitive to the addition of promoters.However,the underlying modulation trend remains unclear.Herein,the adsorption of alkali metal promoters(Na and K)on the surfaces of face-centered-cubic(FCC)and hexagonal-closest packed(HCP)polymorphous cobalt was systematically investigated using density functional theory.Furthermore,the effect of alkali promoters on surface energies and nanoparticle morphologies was revealed on the basis of Wulff theory.For FCC-Co,the exposed area of the(111)facet in the nanoparticle increases with the adsorption coverage of alkali metal oxide.Meanwhile,the(311),(110),and(100)facets would disappear under the higher adsorption coverage of alkali metals.For HCPCo,the Wulff morphology is dominated by the(0001)and(1011)facets and is independent of the alkali metal adsorption coverage.This work provides insights into morphology modulation by alkali metal promoters for the rational design and synthesis of cobalt-based nanomaterials with desired facets and morphologies.展开更多
CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the ...CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the alkali metals on the physicochemical properties of the CoCu/TiO_2 catalysts and the catalytic performance for CO_2 hydrogenation to long-chain hydrocarbons(C_(5+))were investigated in this work. According to the characterization of the catalysts based on X-ray photoelectron spectroscopy, X-ray diffraction, CO_2 temperature-programmed desorption(TPD), and H_2-TPD, the introduction of alkali metals could increase the CO_2 adsorption and decrease the H_2 chemisorption, which could suppress the formation of CH_4, enhance the production of C_(5+), and decrease the hydrogenation activity. Among all the promoters, the Na-modified CoCu/TiO_2 catalyst provided the maximum C_(5+) yield of 5.4%, with a CO_2 conversion of 18.4% and C_(5+) selectivity of42.1%, because it showed the strongest basicity and a slight decrease in the amount of H_2 desorption;it also exhibited excellent catalytic stability of more than 200 h.展开更多
The direct decomposition of N2O was investigated over a series of magnesium cobaltite catalysts,MgxCo1-xCo2O4(0.0 ≤ x ≤ 1.0) ,which were prepared by the thermal decomposition of stoichiometric amounts of magnesium h...The direct decomposition of N2O was investigated over a series of magnesium cobaltite catalysts,MgxCo1-xCo2O4(0.0 ≤ x ≤ 1.0) ,which were prepared by the thermal decomposition of stoichiometric amounts of magnesium hydroxide and cobalt acetate. The thermal genesis of the different catalysts from their precursors was explored using thermogravimetric analysis,differential thermal analysis,and X-ray diffraction. Texture analysis was carried out using N2 adsorption at -196 °C. We found that all the catalysts that were calcined at 500 °C have a spinel structure. N2O decomposition activity was found to increase with an increase in the spinel structure's magnesium content. The influence of alkali cation promoters(Li,Na,K,and Cs) on the activity of the most active catalyst in the MgxCo1-xCo2O4 series,i.e. MgCo2O4,was also investigated. The sequence of the promotional effect was found to be: un-promoted < Li < Na < Cs < K-promoted catalyst. The reason for the increase in activity for the added alkali cations was electronic in nature. Additionally,the dependence of the activity on the K/Co ratio was also determined. The highest activity was obtained for the catalyst with a K/Co ratio of 0.05. A continuous decrease in activity was obtained for higher K/Co ratios. This decrease in activity was attributed to the elimination of mesoporosity in the catalysts with K/Co ratios > 0.05,based on N2 adsorption and scanning electron microscopy results.展开更多
基金financial support from the National Natural Science Foundation of China (Nos.21972157,21972160,and 22202224)the CAS Project for Young Scientists in Basic Research (No.YSBR-005)+2 种基金the Key Research Program of Frontier Sciences CAS (No.ZDBS-LY-7007)the CAS Project for Internet Security and Information Technology (No.CAS-WX2021SF0110)the funding support from Beijing Advanced Innovation Center for Materials Genome Engineering,Synfuels China,Co.Ltd.and Inner Mongolia University of Technology。
文摘Cobalt nanoparticles(NPs)catalysts are extensively used in heterogeneous catalytic reactions,and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst's surface structures and morphologies are sensitive to the addition of promoters.However,the underlying modulation trend remains unclear.Herein,the adsorption of alkali metal promoters(Na and K)on the surfaces of face-centered-cubic(FCC)and hexagonal-closest packed(HCP)polymorphous cobalt was systematically investigated using density functional theory.Furthermore,the effect of alkali promoters on surface energies and nanoparticle morphologies was revealed on the basis of Wulff theory.For FCC-Co,the exposed area of the(111)facet in the nanoparticle increases with the adsorption coverage of alkali metal oxide.Meanwhile,the(311),(110),and(100)facets would disappear under the higher adsorption coverage of alkali metals.For HCPCo,the Wulff morphology is dominated by the(0001)and(1011)facets and is independent of the alkali metal adsorption coverage.This work provides insights into morphology modulation by alkali metal promoters for the rational design and synthesis of cobalt-based nanomaterials with desired facets and morphologies.
文摘CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the alkali metals on the physicochemical properties of the CoCu/TiO_2 catalysts and the catalytic performance for CO_2 hydrogenation to long-chain hydrocarbons(C_(5+))were investigated in this work. According to the characterization of the catalysts based on X-ray photoelectron spectroscopy, X-ray diffraction, CO_2 temperature-programmed desorption(TPD), and H_2-TPD, the introduction of alkali metals could increase the CO_2 adsorption and decrease the H_2 chemisorption, which could suppress the formation of CH_4, enhance the production of C_(5+), and decrease the hydrogenation activity. Among all the promoters, the Na-modified CoCu/TiO_2 catalyst provided the maximum C_(5+) yield of 5.4%, with a CO_2 conversion of 18.4% and C_(5+) selectivity of42.1%, because it showed the strongest basicity and a slight decrease in the amount of H_2 desorption;it also exhibited excellent catalytic stability of more than 200 h.
文摘The direct decomposition of N2O was investigated over a series of magnesium cobaltite catalysts,MgxCo1-xCo2O4(0.0 ≤ x ≤ 1.0) ,which were prepared by the thermal decomposition of stoichiometric amounts of magnesium hydroxide and cobalt acetate. The thermal genesis of the different catalysts from their precursors was explored using thermogravimetric analysis,differential thermal analysis,and X-ray diffraction. Texture analysis was carried out using N2 adsorption at -196 °C. We found that all the catalysts that were calcined at 500 °C have a spinel structure. N2O decomposition activity was found to increase with an increase in the spinel structure's magnesium content. The influence of alkali cation promoters(Li,Na,K,and Cs) on the activity of the most active catalyst in the MgxCo1-xCo2O4 series,i.e. MgCo2O4,was also investigated. The sequence of the promotional effect was found to be: un-promoted < Li < Na < Cs < K-promoted catalyst. The reason for the increase in activity for the added alkali cations was electronic in nature. Additionally,the dependence of the activity on the K/Co ratio was also determined. The highest activity was obtained for the catalyst with a K/Co ratio of 0.05. A continuous decrease in activity was obtained for higher K/Co ratios. This decrease in activity was attributed to the elimination of mesoporosity in the catalysts with K/Co ratios > 0.05,based on N2 adsorption and scanning electron microscopy results.