Physicochemical and mineralogical characteristics of an alkali leaching residue of wolframite were studied by XRD,SEM−EDS,chemical phase analysis,mineral liberation analyzer(MLA),and TG−DSC methods.Batch leaching test...Physicochemical and mineralogical characteristics of an alkali leaching residue of wolframite were studied by XRD,SEM−EDS,chemical phase analysis,mineral liberation analyzer(MLA),and TG−DSC methods.Batch leaching tests,toxicity characteristic leaching procedure(TCLP)tests and Chinese standard leaching tests(CSLT)were conducted to determine the environmental mobility of toxic elements.The results show that,due to the high contents of W,Fe,Mn,Sn,and Nb,the residue is with high resource value,but the content of a toxic element,As,is also high.The existing minerals of the investigated elements mainly occur as monomer particles,but it is difficult to extract these valuable metals by conventional acid leaching due to their mineral properties.The release of As increases over time in acidic environment.The leaching concentration of all investigated harmful elements through TCLP is within the limiting value,while the leaching concentration of As through CSLT exceeds the limiting value by more than 4 times,so the residue is classified as hazardous solid waste based on the Chinese standard.A process for valuable metals recovery from this residue was proposed.Preliminary experimental results indicated that the main valuable metals could be extracted effectively.展开更多
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M...High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.展开更多
Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implemen...Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the modeling and multi\|objective genetic algorithms for continuous digester process. First, model is established, in which environmental pollution and saving energy factors are considered. Then hybrid genetic algorithm based on Pareto stratum\|niche count is designed for finding near\|Pareto or Pareto optimal solutions in the problem and a new genetic evaluation and selection mechanism is proposed. Finally using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester,this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality unchanged.展开更多
基金the financial supports from the National Key R&D Program of China(No.2019YFC1907400)the National Natural Science Foundation of China(Nos.51904351,51620105013)。
文摘Physicochemical and mineralogical characteristics of an alkali leaching residue of wolframite were studied by XRD,SEM−EDS,chemical phase analysis,mineral liberation analyzer(MLA),and TG−DSC methods.Batch leaching tests,toxicity characteristic leaching procedure(TCLP)tests and Chinese standard leaching tests(CSLT)were conducted to determine the environmental mobility of toxic elements.The results show that,due to the high contents of W,Fe,Mn,Sn,and Nb,the residue is with high resource value,but the content of a toxic element,As,is also high.The existing minerals of the investigated elements mainly occur as monomer particles,but it is difficult to extract these valuable metals by conventional acid leaching due to their mineral properties.The release of As increases over time in acidic environment.The leaching concentration of all investigated harmful elements through TCLP is within the limiting value,while the leaching concentration of As through CSLT exceeds the limiting value by more than 4 times,so the residue is classified as hazardous solid waste based on the Chinese standard.A process for valuable metals recovery from this residue was proposed.Preliminary experimental results indicated that the main valuable metals could be extracted effectively.
基金supported by the National Natural Science Foundation of China(52162030)the Yunnan Major Scientific and Technological Projects(202202AG050003)+4 种基金the Key Research and Development Program of Yunnan Province(202103AA080019)the Scientific Research Foundation of Kunming University of Science and Technology(20220122)the Graduate Student Top Innovative Talent Program of Kunming University of Science and Technology(CA23107M139A)the Analysis and Testing Foundation of Kunming University of Science and Technology(2023T20220122)the Shenzhen Science and Technology Program(KCXST20221021111201003)。
文摘High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.
基金TheNationNaturalScienceFoundationofChina (No .6 9974 0 34)
文摘Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the modeling and multi\|objective genetic algorithms for continuous digester process. First, model is established, in which environmental pollution and saving energy factors are considered. Then hybrid genetic algorithm based on Pareto stratum\|niche count is designed for finding near\|Pareto or Pareto optimal solutions in the problem and a new genetic evaluation and selection mechanism is proposed. Finally using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester,this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality unchanged.