In karst areas,the drainage pipes of aging tunnels are prone to be clogged by precipitated carbonates,resulting in lining cracking and tunnel leaking.As a result,not only the driving safety will be deteriorated,but al...In karst areas,the drainage pipes of aging tunnels are prone to be clogged by precipitated carbonates,resulting in lining cracking and tunnel leaking.As a result,not only the driving safety will be deteriorated,but also the water pressure on the lining might also be elevated significantly.For the structural stability and service lifespan of old tunnels,it is of great importance to remove these precipitated carbonates in time.Traditional treatment methods are often destructive to some extent or not efficient enough.This study aims to experimentally develop an eco-friendly acid-based chemical cleaning method to remove carbonate precipitations efficiently.The proposed chemical cleaning agent is an aqueous solution with strong acidity,consisting of sulfamic acid,water,and additives.The factors affecting the cleaning efficiency include the acid solubility,temperature and flow rate of the cleaning agent,as well as additives.Elevating the solution temperature to 50C or a flow rate of no less than 0.2 m/s can improve cleaning efficiency.Although the salt effect cannot work,1 wt%of polymaleic acid as a surfactant could further promote the cleaning rate.The cleaning efficiency will increase with the flow rate in a power function.The relatively low flow rate that improves the cleaning rate considerably can avoid highpressure-induced mechanical damage to tunnel drainpipes.The waste could be easily treated to acceptable levels using commercial sewage treatment products and can also be recycled in agriculture.With the chemical cleaning,the water pressure at the arch springing of the lining will reduce with the increased radius of transverse drainpipes in a power function.The proposed acid-based cleaning method,which is highly efficient,non-or low-destructive to aging tunnels,sufficiently safe for humans,and friendly enough to the environment,will offer a promising alternative to remove the precipitated carbonates in tunnel drainpipes efficiently.展开更多
Ferulic acid(FA)and p-coumaric acid(pCA)in bagasse,wheat straw,corn straw,and corncob were extracted by alkaline hydrolysis and characterized by gas chromatography(GC)and gas chromatography-mass spectrometry(GC-MS).It...Ferulic acid(FA)and p-coumaric acid(pCA)in bagasse,wheat straw,corn straw,and corncob were extracted by alkaline hydrolysis and characterized by gas chromatography(GC)and gas chromatography-mass spectrometry(GC-MS).It was found that the FA and most of the pCA in gramineous biomass could be dissociated and released after being treated with 1 M NaOH at 100℃for 4 h.The yields of pCA/FA in bagasse,wheat straw,corn straw,and corncob determined by GC-FID are 39.8/11.5,13.7/11.0,28.0/11.0,and 35.1/14.5 mg/g,respectively.The raw materials and the treated solid residues were characterized by gel-state 2D Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance(2D HSQC NMR).It was found that only a small amount of lignin was detected in the residue after alkali treatment,indicating that the alkali treatment conditions can effectively cleave the FA and pCA.Additionally,the lignin in the alkali solution was recovered and characterized by 2D HSQC NMR.The FA was not able to be detected by NMR,whereas a small amount of pCA remained in the alkali lignin.This study reveals the structural change of residual lignins during the quantitative isolation of FA and pCA,which is essential for the selective isolation of pCA/FA and valorization of residual alkali lignin.展开更多
In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones....In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation.展开更多
In the past tens of years,the power conversion efficiency of Cu(In,Ga)Se2(CIGS)has continuously improved and been one of the fastest growing photovoltaic technologies that can also help us achieve the goal of carbon e...In the past tens of years,the power conversion efficiency of Cu(In,Ga)Se2(CIGS)has continuously improved and been one of the fastest growing photovoltaic technologies that can also help us achieve the goal of carbon emissions reduction.Among several key advances,the alkali element post-deposition treatment(AlK PDT)is regarded as the most important finding in the last 10 years,which has led to the improvement of CIGS solar cell efficiency from 20.4%to 23.35%.A profound understanding of the influence of alkali element on the chemical and electrical properties of the CIGS absorber along with the underlying mechanisms is of great importance.In this review,we summarize the strategies of the alkali element doping in CIGS solar cell,the problems to be noted in the PDT process,the effects on the CdS buffer layer,the effects of different alkali elements on the structure and morphology of the CIGS absorber layer,and retrospect the progress in the CIGS solar cell with emphasis on the alkali element post deposition treatment.展开更多
Hollow polymer latex particles were prepared by seeded emulsion polymerization. A seed latex consisting of styrene (St), butyl acrylate(BA) copolymer was first prepared, and seeded terpolymerization of St BA MA(methac...Hollow polymer latex particles were prepared by seeded emulsion polymerization. A seed latex consisting of styrene (St), butyl acrylate(BA) copolymer was first prepared, and seeded terpolymerization of St BA MA(methacrylic acid) were then carried out in the absence of surfactant. Final latex was treated by a two step treatment under alkaline and acidic conditions, thus, the particles with hollow structure were obtained. We discussed the effects of pH value, temperature and time in alkali and acid treatment processes on hollow structure within the polymer latex particles and amount of carboxylic group on particle surface. The results show that the hollow polymer latex particles with the largest hollow size can be obtained under a certain condition (pH12.5, 90°C, 3 h in alkali treatment stage and pH2.5, 85°C, 3 h in acid treatment stage).展开更多
The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely ac...The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NO_(x) conversion at 150-300.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specifi c surface area of the catalyst,which provided abundant adsorption sites for NO_(x) and NH_(3).Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrifi cing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH_(3) adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH_(3)-SCR catalyst with high activity at low temperatures.展开更多
Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL...Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.展开更多
BACKGROUND Pediatric abdominal infection is a common but serious disease that requires timely and effective treatment.In surgical treatment,accurate diagnosis and rational application of antibiotics are the keys to im...BACKGROUND Pediatric abdominal infection is a common but serious disease that requires timely and effective treatment.In surgical treatment,accurate diagnosis and rational application of antibiotics are the keys to improving treatment effects.AIM To investigate the effect of broad-spectrum bacterial detection on postoperative antibiotic therapy.METHODS A total of 100 children with abdominal infection who received surgical treatment in our hospital from September 2020 to July 2021 were grouped.The observation group collected blood samples upon admission and sent them for broad-spectrum bacterial infection nucleic acid testing,and collected pus or exudate during the operation for bacterial culture and drug sensitivity testing;the control group only sent bacterial culture and drug sensitivity testing during the operation.RESULTS White blood cell count,C-reactive protein,procalcitonin,3 days after surgery,showed better postoperative index than the control group(P<0.05).The hospital stay in the observation group was significantly shorter than that in the control group.The hospitalization cost in the observation group was significantly lower than that in the control group,and the difference between the two groups was statistically significant(P<0.05).CONCLUSION Early detection of broad-spectrum bacterial infection nucleic acids in pediatric abdominal infections can help identify pathogens sooner and guide the appropriate use of antibiotics,improving treatment outcomes and reducing medical costs to some extent.展开更多
The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality para...The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality paradox is also evident when comparing Nigeria,a heavily populated,poorly vaccinated and weakly mandated country to Israel,a small,highly vaccinated and strictly mandated country.Nigeria has almost 4 times lower COVID mortality than Israel.In this Field of Vision perspective,I explain how this paradox has evolved drawing upon my academic,clinical and social experience.Since April 2020,I’ve developed and been using the Egyptian immune-modulatory Kelleni’s protocol to manage COVID-19 patients including pediatric,geriatric,pregnant,immune-compromised and other individuals suffering from multiple comorbidities.It’s unfortunate that severe acute respiratory syndrome coronavirus 2 is still evolving accompanied by more deaths.However in Africa,we’ve been able to live without anxiety or mandates throughout the pandemic because we trust science and adopted early treatment using safe,and effective repurposed drugs that have saved the majority of COVID-19 patients.This article represents an African and Egyptian tale of honor.展开更多
Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reporte...Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 20 to 55 (38.4 9.03). During the course of Study 2, 0.6 mL of SK-II FTE was applied to the face twice daily in the morning and afternoon. Skin measurements were performed at the start of the day (baseline) and at week 8. Results: In Study 1, we examined the stratum corneum levels of 23 NMF components comparing to the skin hydration status in 196 female subjects. The subjects were divided into two groups using the median of each measured NMF component. Skin hydration values were compared between the two groups defined for each NMF component. The results showed that subjects with higher levels of six amino acids, alanine, arginine, asparagine, glutamine, glycine, and histidine, exhibited significantly higher skin hydration than those with lower amino acid levels. No significant differences in skin hydration values were found for the other 17 NMF components. We then analyzed whether the sum of these six amino acid NMF components (called 6-AA-NMFs, hereafter) is affected by aging. The 6-AA-NMF level peaked in the subjects aged 25-29, and then gradually and significantly decreased with age. Interestingly, the 6-AA-NMF level was significantly correlated with the skin hydration value, but not with TEWL. In addition, the 6-AA-NMF level demonstrated significant correlations with the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Then, in Study 2, we examined whether the daily application of SK-II FTE affects the 6-AA-NMF level and visual aging parameters in 63 females. SK-II FTE demonstrated significant increases of the levels of 6-AA-NMFs and each of its components associated with hydration and barrier function, and improvements of skin texture, pores, wrinkles, and dullness (L-value) during the 8 weeks of treatment of facial skin. Conclusion: These clinical studies with large numbers of subjects across a wide age range revealed that six amino acids as NMF components were highly correlated with facial skin hydration in the stratum corneum. The levels of these six NMF components were also found to decrease at ages after the 30 s and were significantly correlated with major signs of skin aging. Notably, these six NMF components (6-AA-NMFs) were increased by SK-II FTE treatment associated with improvements of skin hydration and signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). These studies were limited by the lack of investigation of why some NMF components were not associated with skin hydration. More clinical trials examining various NMF components and their relationship with aging are anticipated.展开更多
Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and pha...Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.展开更多
[Objective] The paper was to evaluate effects of peracetic acid (PAA) combined with calcium treatments on storage quality of Ioquat fruits, so as to pro- vide practical techniques to solve the problems of postharves...[Objective] The paper was to evaluate effects of peracetic acid (PAA) combined with calcium treatments on storage quality of Ioquat fruits, so as to pro- vide practical techniques to solve the problems of postharvest rot and quality deteri- oration for Ioquat fruits. [Method] With Ioquat fruits of Qingzhong variety as materi- als, 0.2%, 0.4% and 0.8% PAA combined with 0.8% CaCI2 was used to soak Ioquat fruits for 4 min, 0.8% CaCl2 and water treatments were set as two controls; the fruits were dried and packaged by 0.02 mm PE bags, then stored under non-chilling low temperature of (7±1) ℃. The indicators related to storage quality of Ioquat fruits were randomly tested once every 3 d, and their variation situations were analyzed. [Result] Compared with two control treatments and 0.2% PAA, 0.8% PAA combined with calcium treatments, the treatment of 0.4% PAA combined with 0.8% CaCl2 could significantly inhibit rot index, weight loss rate, firmness and cell membrane permeability of Ioquat fruits during storage period, which could also effectively delay the reduction of titratable acid, vitamin C, soluble solid content and juice yield, and maintain respiration intensity of fruits at a low level; the appearance and flavor qual- ity of fruits were good after stored for 25 d. [Conclusion] 0.4% PAA combined with 0.8% CaCl2 treatment is an efficient, safe and economical practice technology in an- ti-corrosion and quality preservation for postharvest Ioquat fruits .展开更多
Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective a...Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.展开更多
Porous Ti35Nb alloy with a porosity of 66% was made by a powder metallurgical method, and then it was treated by a standard treatment for activating the surface of Ti implant materials involving alkali and heat treatm...Porous Ti35Nb alloy with a porosity of 66% was made by a powder metallurgical method, and then it was treated by a standard treatment for activating the surface of Ti implant materials involving alkali and heat treatment. The alkali and heat treatment causes damages of the struts of the porous Ti35Nb in the form of reaction products layer, grain-pullout and cracks. Consequently, it leads to a significant degradation of the strength of the porous alloy. The effect of the alkali and heat treatment on the strength of the porous alloy was discussed.展开更多
Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA)....Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).展开更多
Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation du...Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation during sorbitol hydrogenolysis over Ni/C catalyst.In the case of Ca(OH)2,the selectivity of lactic acid was 8.9%.In contrast,the inclusion of La(OH)3 resulted in a sorbitol conversion of 99% with only trace quantities of lactic acid being detected.In addition,the total selectivity towards the C2 and C4 products increased from 20.0% to 24.5% going from Ca(OH)2 to La(OH)3.These results therefore indicated that La(OH)3 could be used as an efficient alkaline additive to enhance the conversion of sorbitol.Pyruvic aldehyde,which is formed as an intermediate during sorbitol hydrogenolysis,can be converted to both 1,2-propylene glycol and lactic acid by hydrogenation and rearrangement reactions,respectively.Notably,these two reactions are competitive.When Ca(OH)2 was used as an additive for sorbitol hydrogenolysis,both the hydrogenation and rearrangement reactions occurred.In contrast,the use of La(OH)3 favored the hydrogenation reaction,with only trace quantities of lactic acid being formed.展开更多
Zeolite synthesized from fly ash (ZFA) without modification is not efficient for the purification of NH4+ and phosphate at low concentrations that occur in real effluents, despite the high potential removal capacit...Zeolite synthesized from fly ash (ZFA) without modification is not efficient for the purification of NH4+ and phosphate at low concentrations that occur in real effluents, despite the high potential removal capacity. To develop an effective technique to enhance the removal efficiency of ammonium and phosphate at low concentrations, ZFA was modified with acid treatment and the simultaneous removal of ammonium and phosphate in a wide range of concentration was investigated. It was seen that when compared with untreated ZFA, only the treatment by 0.01 mol/L of H2SO4 significantly improved the removal efficiency of ammonium at low initial concentrations. The behavior was well explained by the pH effect. Treatment by more concentrated H2SO4 led to the deterioration of the ZFA structure and a decrease in the cation exchange capacity. Treatment by 0.01 mol/L H2SO4 improved the removal efficiency of phosphate by ZFA at all initial P concentrations, while the treatment by concentrated H2SO4 (≥0.9 mol/L) resulted in a limited maximum phosphate immobilization capacity (PIC). It was concluded that through a previous mild acid treatment (e.g. 0.01 mol/L of H2SO4), ZFA can be used in the simultaneous removal of NH4+ and P at low concentrations simulating real effluent.展开更多
Heat and acid treatments were reported to be a promising substitute for SO2 fumigation in color protection of postharvest lychee (Litchi chinensis) fruits, but the mechanism was not clear. In the present study, hot ...Heat and acid treatments were reported to be a promising substitute for SO2 fumigation in color protection of postharvest lychee (Litchi chinensis) fruits, but the mechanism was not clear. In the present study, hot water (70℃) dipping followed by immersion in 2% HC1 (heat-acid) substantially protected the red color of the fruit during storage at 25℃ and inhibited anthocyanin degradation while hot water dipping alone (heat) led to rapidly browning and about 90% loss in anthocyanin content. The pH values in the pericarp of the heat-acid treated fruit dropped to 3.2, while the values maintained around 5.0 in the heat-treated and control fruit. No significantly different pH values were detected among the arils of heat-acid, heat treated and control fruit. Heat-acid treatment dramatically reduced the activities of anthocyanin degradation enzyme (ADE), peroxidase (POD) and polyphenol oxidase in the pericarp. A marked reduction in LcPOD gene expression was also detected in heat-acid treated fruit, in contrast, induction was found in heat treated fruit. The pericarp of heat-acid treated fruit exhibited significantly lower respiration rate but faster water loss than that of the untreated or heat treated fruit. Taken together, heat treatment triggered quick browning and anthocyanin loss in lychee fruit, while heat-acid treatment protected the fruit color by a great reduction in the activities/gene expression of anthocyanin degradation enzymes and acidification of lychee pericarp.展开更多
ZSM-48 zeolites with various Si/Al ratios were hydrothermally synthesized in the H;N(CH;);NH;(HDA)-containing media. The obtained samples were highly crystallized with minor mixed phases as evidenced by X-ray powd...ZSM-48 zeolites with various Si/Al ratios were hydrothermally synthesized in the H;N(CH;);NH;(HDA)-containing media. The obtained samples were highly crystallized with minor mixed phases as evidenced by X-ray powder diffraction(XRD). The alkaline treated ZSM-48 zeolites maintained its structure under different concentrations of Na OH aqueous solution. Micropores remained unchanged while mesopores with wide pore size distribution formed after the alkaline treatment. The surface area increased from 228 to 288 m;/g. The Br?nsted acid sites had little alteration while an obvious increase of Lewis acid sites was observed. The hydroisomerization of hexadecane was performed as the model reaction to test the effects of the alkali treatment. The conversion of hexadecane had almost no change, which was attributed to the preservation of the Br?nsted acid sites. While high selectivity to iso-hexadecane with an improved iso to normal ratio of alkanes was due to the mesopore formation and improved diffusivity.展开更多
Novel catalysts of phosphotungstic heteropolyacids (PW12) supported on neutral alumina were prepared by assistance of ultrasound and plasma treatment. The prepared catalysts were characterized by FT-IR pyridine adso...Novel catalysts of phosphotungstic heteropolyacids (PW12) supported on neutral alumina were prepared by assistance of ultrasound and plasma treatment. The prepared catalysts were characterized by FT-IR pyridine adsorption (Py-IR), temperature programmed desorption of Pyridine (Py-TPD), BET and X-ray diffraction (XRD), and their catalytic performances were evaluated by the cationic polymerization of tetrahydrofuran. The results indicate that plasma treatment remarkably increases the surface acidity of the prepared catalyst while ultrasonic treatment induces PW12 to uniformly disperse on the support surface and expose more active sites for the acid catalytic reaction. A higher catalytic activity (69.7%) is obtained on the novel catalyst, which significantly outstripped that on the conventional sample (57.5%).展开更多
基金The financial support from the Fundamental Research Funds for the Central Universities,China(Grant No.YJ2021148)is gratefully acknowledged.The authors are also grateful to Prof.Ming Lü,a member of the Norwegian Academy of Technological Sciences from Norway,for his valuable suggestions.
文摘In karst areas,the drainage pipes of aging tunnels are prone to be clogged by precipitated carbonates,resulting in lining cracking and tunnel leaking.As a result,not only the driving safety will be deteriorated,but also the water pressure on the lining might also be elevated significantly.For the structural stability and service lifespan of old tunnels,it is of great importance to remove these precipitated carbonates in time.Traditional treatment methods are often destructive to some extent or not efficient enough.This study aims to experimentally develop an eco-friendly acid-based chemical cleaning method to remove carbonate precipitations efficiently.The proposed chemical cleaning agent is an aqueous solution with strong acidity,consisting of sulfamic acid,water,and additives.The factors affecting the cleaning efficiency include the acid solubility,temperature and flow rate of the cleaning agent,as well as additives.Elevating the solution temperature to 50C or a flow rate of no less than 0.2 m/s can improve cleaning efficiency.Although the salt effect cannot work,1 wt%of polymaleic acid as a surfactant could further promote the cleaning rate.The cleaning efficiency will increase with the flow rate in a power function.The relatively low flow rate that improves the cleaning rate considerably can avoid highpressure-induced mechanical damage to tunnel drainpipes.The waste could be easily treated to acceptable levels using commercial sewage treatment products and can also be recycled in agriculture.With the chemical cleaning,the water pressure at the arch springing of the lining will reduce with the increased radius of transverse drainpipes in a power function.The proposed acid-based cleaning method,which is highly efficient,non-or low-destructive to aging tunnels,sufficiently safe for humans,and friendly enough to the environment,will offer a promising alternative to remove the precipitated carbonates in tunnel drainpipes efficiently.
基金grateful for the financial support for this work from the National Natural Science Foundation of China(31870560,22108088)the State Key Laboratory of Pulp and Paper Engineering(South China University of Technology),No.202105.
文摘Ferulic acid(FA)and p-coumaric acid(pCA)in bagasse,wheat straw,corn straw,and corncob were extracted by alkaline hydrolysis and characterized by gas chromatography(GC)and gas chromatography-mass spectrometry(GC-MS).It was found that the FA and most of the pCA in gramineous biomass could be dissociated and released after being treated with 1 M NaOH at 100℃for 4 h.The yields of pCA/FA in bagasse,wheat straw,corn straw,and corncob determined by GC-FID are 39.8/11.5,13.7/11.0,28.0/11.0,and 35.1/14.5 mg/g,respectively.The raw materials and the treated solid residues were characterized by gel-state 2D Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance(2D HSQC NMR).It was found that only a small amount of lignin was detected in the residue after alkali treatment,indicating that the alkali treatment conditions can effectively cleave the FA and pCA.Additionally,the lignin in the alkali solution was recovered and characterized by 2D HSQC NMR.The FA was not able to be detected by NMR,whereas a small amount of pCA remained in the alkali lignin.This study reveals the structural change of residual lignins during the quantitative isolation of FA and pCA,which is essential for the selective isolation of pCA/FA and valorization of residual alkali lignin.
基金supported by the National Natural Science Foundation of China(51674049,52074044,and 51874053)the Scientific Research Foundation of Hunan Provincial Education Department,China(22B0854)。
文摘In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation.
基金supported by the National Key R&D Program of China Grant(no.2018YFB1500200)the National Natural Science Foundation of China under Grant(nos.61804159 and 52173243)+2 种基金the Natural Science Foundation of Guangdong Province,Guangzhou,China(no.2021A1515011409)Shenzhen&Hong Kong Joint Research Program(no.SGDX20201103095605015)SIAT-CUHK Joint Laboratory of Photovoltaic Solar Energy.
文摘In the past tens of years,the power conversion efficiency of Cu(In,Ga)Se2(CIGS)has continuously improved and been one of the fastest growing photovoltaic technologies that can also help us achieve the goal of carbon emissions reduction.Among several key advances,the alkali element post-deposition treatment(AlK PDT)is regarded as the most important finding in the last 10 years,which has led to the improvement of CIGS solar cell efficiency from 20.4%to 23.35%.A profound understanding of the influence of alkali element on the chemical and electrical properties of the CIGS absorber along with the underlying mechanisms is of great importance.In this review,we summarize the strategies of the alkali element doping in CIGS solar cell,the problems to be noted in the PDT process,the effects on the CdS buffer layer,the effects of different alkali elements on the structure and morphology of the CIGS absorber layer,and retrospect the progress in the CIGS solar cell with emphasis on the alkali element post deposition treatment.
文摘Hollow polymer latex particles were prepared by seeded emulsion polymerization. A seed latex consisting of styrene (St), butyl acrylate(BA) copolymer was first prepared, and seeded terpolymerization of St BA MA(methacrylic acid) were then carried out in the absence of surfactant. Final latex was treated by a two step treatment under alkaline and acidic conditions, thus, the particles with hollow structure were obtained. We discussed the effects of pH value, temperature and time in alkali and acid treatment processes on hollow structure within the polymer latex particles and amount of carboxylic group on particle surface. The results show that the hollow polymer latex particles with the largest hollow size can be obtained under a certain condition (pH12.5, 90°C, 3 h in alkali treatment stage and pH2.5, 85°C, 3 h in acid treatment stage).
基金This work was supported by the National Key R&D Program of China(Nos.2022YFB3504100 and 2022YFB3504102)Natural National Science Foundation of China(No.22276133)+1 种基金Natural National Science Foundation of China(No.U20A20132)Natural National Science Foundation of China(No.52106180).
文摘The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NO_(x) conversion at 150-300.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specifi c surface area of the catalyst,which provided abundant adsorption sites for NO_(x) and NH_(3).Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrifi cing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH_(3) adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH_(3)-SCR catalyst with high activity at low temperatures.
基金supported by the National Natural Science Foundation of China(82222901,82103355,and 82272619)the Innovation and Technology Fund—Guangdong–Hong Kong Technology Cooperation Funding Scheme(GHP/086/21GD)+4 种基金the Research Grants Council(RGC)Theme-based Research Scheme(T12-703/19-R)the Research Grants Council-General Research Fund(14117422 and 14117123)the Health and Medical Research Fund,Hong Kong(08191336 and 07210097)the CUHK Research Startup Fund(FPU/2023/149)the Natural Science Foundation of Fujian Province(2020J01122587).
文摘Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.
基金Zhangjiakou Science and Technology Tackling Program,No.2021099D.
文摘BACKGROUND Pediatric abdominal infection is a common but serious disease that requires timely and effective treatment.In surgical treatment,accurate diagnosis and rational application of antibiotics are the keys to improving treatment effects.AIM To investigate the effect of broad-spectrum bacterial detection on postoperative antibiotic therapy.METHODS A total of 100 children with abdominal infection who received surgical treatment in our hospital from September 2020 to July 2021 were grouped.The observation group collected blood samples upon admission and sent them for broad-spectrum bacterial infection nucleic acid testing,and collected pus or exudate during the operation for bacterial culture and drug sensitivity testing;the control group only sent bacterial culture and drug sensitivity testing during the operation.RESULTS White blood cell count,C-reactive protein,procalcitonin,3 days after surgery,showed better postoperative index than the control group(P<0.05).The hospital stay in the observation group was significantly shorter than that in the control group.The hospitalization cost in the observation group was significantly lower than that in the control group,and the difference between the two groups was statistically significant(P<0.05).CONCLUSION Early detection of broad-spectrum bacterial infection nucleic acids in pediatric abdominal infections can help identify pathogens sooner and guide the appropriate use of antibiotics,improving treatment outcomes and reducing medical costs to some extent.
文摘The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality paradox is also evident when comparing Nigeria,a heavily populated,poorly vaccinated and weakly mandated country to Israel,a small,highly vaccinated and strictly mandated country.Nigeria has almost 4 times lower COVID mortality than Israel.In this Field of Vision perspective,I explain how this paradox has evolved drawing upon my academic,clinical and social experience.Since April 2020,I’ve developed and been using the Egyptian immune-modulatory Kelleni’s protocol to manage COVID-19 patients including pediatric,geriatric,pregnant,immune-compromised and other individuals suffering from multiple comorbidities.It’s unfortunate that severe acute respiratory syndrome coronavirus 2 is still evolving accompanied by more deaths.However in Africa,we’ve been able to live without anxiety or mandates throughout the pandemic because we trust science and adopted early treatment using safe,and effective repurposed drugs that have saved the majority of COVID-19 patients.This article represents an African and Egyptian tale of honor.
文摘Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 20 to 55 (38.4 9.03). During the course of Study 2, 0.6 mL of SK-II FTE was applied to the face twice daily in the morning and afternoon. Skin measurements were performed at the start of the day (baseline) and at week 8. Results: In Study 1, we examined the stratum corneum levels of 23 NMF components comparing to the skin hydration status in 196 female subjects. The subjects were divided into two groups using the median of each measured NMF component. Skin hydration values were compared between the two groups defined for each NMF component. The results showed that subjects with higher levels of six amino acids, alanine, arginine, asparagine, glutamine, glycine, and histidine, exhibited significantly higher skin hydration than those with lower amino acid levels. No significant differences in skin hydration values were found for the other 17 NMF components. We then analyzed whether the sum of these six amino acid NMF components (called 6-AA-NMFs, hereafter) is affected by aging. The 6-AA-NMF level peaked in the subjects aged 25-29, and then gradually and significantly decreased with age. Interestingly, the 6-AA-NMF level was significantly correlated with the skin hydration value, but not with TEWL. In addition, the 6-AA-NMF level demonstrated significant correlations with the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Then, in Study 2, we examined whether the daily application of SK-II FTE affects the 6-AA-NMF level and visual aging parameters in 63 females. SK-II FTE demonstrated significant increases of the levels of 6-AA-NMFs and each of its components associated with hydration and barrier function, and improvements of skin texture, pores, wrinkles, and dullness (L-value) during the 8 weeks of treatment of facial skin. Conclusion: These clinical studies with large numbers of subjects across a wide age range revealed that six amino acids as NMF components were highly correlated with facial skin hydration in the stratum corneum. The levels of these six NMF components were also found to decrease at ages after the 30 s and were significantly correlated with major signs of skin aging. Notably, these six NMF components (6-AA-NMFs) were increased by SK-II FTE treatment associated with improvements of skin hydration and signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). These studies were limited by the lack of investigation of why some NMF components were not associated with skin hydration. More clinical trials examining various NMF components and their relationship with aging are anticipated.
基金Projects(51172050,51102060,51302050)supported by the National Natural Science Foundation of ChinaProject(HIT.ICRST.2010009)supported by the Fundamental Research Funds for Central Universities,ChinaProject(HIT.NSRIF.2014129)supported by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China
文摘Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest "Tec-hnology Research and Experimental Demonstration of Loquat Industry"(201003073)~~
文摘[Objective] The paper was to evaluate effects of peracetic acid (PAA) combined with calcium treatments on storage quality of Ioquat fruits, so as to pro- vide practical techniques to solve the problems of postharvest rot and quality deteri- oration for Ioquat fruits. [Method] With Ioquat fruits of Qingzhong variety as materi- als, 0.2%, 0.4% and 0.8% PAA combined with 0.8% CaCI2 was used to soak Ioquat fruits for 4 min, 0.8% CaCl2 and water treatments were set as two controls; the fruits were dried and packaged by 0.02 mm PE bags, then stored under non-chilling low temperature of (7±1) ℃. The indicators related to storage quality of Ioquat fruits were randomly tested once every 3 d, and their variation situations were analyzed. [Result] Compared with two control treatments and 0.2% PAA, 0.8% PAA combined with calcium treatments, the treatment of 0.4% PAA combined with 0.8% CaCl2 could significantly inhibit rot index, weight loss rate, firmness and cell membrane permeability of Ioquat fruits during storage period, which could also effectively delay the reduction of titratable acid, vitamin C, soluble solid content and juice yield, and maintain respiration intensity of fruits at a low level; the appearance and flavor qual- ity of fruits were good after stored for 25 d. [Conclusion] 0.4% PAA combined with 0.8% CaCl2 treatment is an efficient, safe and economical practice technology in an- ti-corrosion and quality preservation for postharvest Ioquat fruits .
文摘Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.
基金Project(2010FJ3132)supported by the Scientific and Technological Project of Hunan Science and Technology Commission,ChinaProject(09A089)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘Porous Ti35Nb alloy with a porosity of 66% was made by a powder metallurgical method, and then it was treated by a standard treatment for activating the surface of Ti implant materials involving alkali and heat treatment. The alkali and heat treatment causes damages of the struts of the porous Ti35Nb in the form of reaction products layer, grain-pullout and cracks. Consequently, it leads to a significant degradation of the strength of the porous alloy. The effect of the alkali and heat treatment on the strength of the porous alloy was discussed.
文摘Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).
基金supported by the National Natural Science Foundation of China(21203183,21233008,21473188)~~
文摘Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation during sorbitol hydrogenolysis over Ni/C catalyst.In the case of Ca(OH)2,the selectivity of lactic acid was 8.9%.In contrast,the inclusion of La(OH)3 resulted in a sorbitol conversion of 99% with only trace quantities of lactic acid being detected.In addition,the total selectivity towards the C2 and C4 products increased from 20.0% to 24.5% going from Ca(OH)2 to La(OH)3.These results therefore indicated that La(OH)3 could be used as an efficient alkaline additive to enhance the conversion of sorbitol.Pyruvic aldehyde,which is formed as an intermediate during sorbitol hydrogenolysis,can be converted to both 1,2-propylene glycol and lactic acid by hydrogenation and rearrangement reactions,respectively.Notably,these two reactions are competitive.When Ca(OH)2 was used as an additive for sorbitol hydrogenolysis,both the hydrogenation and rearrangement reactions occurred.In contrast,the use of La(OH)3 favored the hydrogenation reaction,with only trace quantities of lactic acid being formed.
基金Project supported by the Chinese Ministry of Science and Technology Funding (No. 2002AA601013).
文摘Zeolite synthesized from fly ash (ZFA) without modification is not efficient for the purification of NH4+ and phosphate at low concentrations that occur in real effluents, despite the high potential removal capacity. To develop an effective technique to enhance the removal efficiency of ammonium and phosphate at low concentrations, ZFA was modified with acid treatment and the simultaneous removal of ammonium and phosphate in a wide range of concentration was investigated. It was seen that when compared with untreated ZFA, only the treatment by 0.01 mol/L of H2SO4 significantly improved the removal efficiency of ammonium at low initial concentrations. The behavior was well explained by the pH effect. Treatment by more concentrated H2SO4 led to the deterioration of the ZFA structure and a decrease in the cation exchange capacity. Treatment by 0.01 mol/L H2SO4 improved the removal efficiency of phosphate by ZFA at all initial P concentrations, while the treatment by concentrated H2SO4 (≥0.9 mol/L) resulted in a limited maximum phosphate immobilization capacity (PIC). It was concluded that through a previous mild acid treatment (e.g. 0.01 mol/L of H2SO4), ZFA can be used in the simultaneous removal of NH4+ and P at low concentrations simulating real effluent.
基金supported by the National Key Basic Research Program of China (2013CB127105)the National Natural Science Foundation of China (30671466)+1 种基金China Litchi and Logan Research System (CARS-33-14)Guangdong Fruit Research System,China (2009-356)
文摘Heat and acid treatments were reported to be a promising substitute for SO2 fumigation in color protection of postharvest lychee (Litchi chinensis) fruits, but the mechanism was not clear. In the present study, hot water (70℃) dipping followed by immersion in 2% HC1 (heat-acid) substantially protected the red color of the fruit during storage at 25℃ and inhibited anthocyanin degradation while hot water dipping alone (heat) led to rapidly browning and about 90% loss in anthocyanin content. The pH values in the pericarp of the heat-acid treated fruit dropped to 3.2, while the values maintained around 5.0 in the heat-treated and control fruit. No significantly different pH values were detected among the arils of heat-acid, heat treated and control fruit. Heat-acid treatment dramatically reduced the activities of anthocyanin degradation enzyme (ADE), peroxidase (POD) and polyphenol oxidase in the pericarp. A marked reduction in LcPOD gene expression was also detected in heat-acid treated fruit, in contrast, induction was found in heat treated fruit. The pericarp of heat-acid treated fruit exhibited significantly lower respiration rate but faster water loss than that of the untreated or heat treated fruit. Taken together, heat treatment triggered quick browning and anthocyanin loss in lychee fruit, while heat-acid treatment protected the fruit color by a great reduction in the activities/gene expression of anthocyanin degradation enzymes and acidification of lychee pericarp.
基金supported by the National Natural Science Foundation of China(21073023)
文摘ZSM-48 zeolites with various Si/Al ratios were hydrothermally synthesized in the H;N(CH;);NH;(HDA)-containing media. The obtained samples were highly crystallized with minor mixed phases as evidenced by X-ray powder diffraction(XRD). The alkaline treated ZSM-48 zeolites maintained its structure under different concentrations of Na OH aqueous solution. Micropores remained unchanged while mesopores with wide pore size distribution formed after the alkaline treatment. The surface area increased from 228 to 288 m;/g. The Br?nsted acid sites had little alteration while an obvious increase of Lewis acid sites was observed. The hydroisomerization of hexadecane was performed as the model reaction to test the effects of the alkali treatment. The conversion of hexadecane had almost no change, which was attributed to the preservation of the Br?nsted acid sites. While high selectivity to iso-hexadecane with an improved iso to normal ratio of alkanes was due to the mesopore formation and improved diffusivity.
基金the National Natural Science Foundation of China(No.205903603)the Ministry of Sciences and Technology of China(No.2005CB221406)the New Century Excellent Talent Project of Ministry of Education of China(No.CET-05-0783)
文摘Novel catalysts of phosphotungstic heteropolyacids (PW12) supported on neutral alumina were prepared by assistance of ultrasound and plasma treatment. The prepared catalysts were characterized by FT-IR pyridine adsorption (Py-IR), temperature programmed desorption of Pyridine (Py-TPD), BET and X-ray diffraction (XRD), and their catalytic performances were evaluated by the cationic polymerization of tetrahydrofuran. The results indicate that plasma treatment remarkably increases the surface acidity of the prepared catalyst while ultrasonic treatment induces PW12 to uniformly disperse on the support surface and expose more active sites for the acid catalytic reaction. A higher catalytic activity (69.7%) is obtained on the novel catalyst, which significantly outstripped that on the conventional sample (57.5%).