In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations....In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations.Three discharge modes,i.e.,α,γ,and drift-ambipolar(DA),were considered in this study.The results show that a mode transition from theγ-DA hybrid mode dominated by theγmode to the DA-αhybrid mode dominated by the DA mode is induced by increasing the frequency from 100 k Hz to 40 MHz.Furthermore,the electron temperature decreases with increasing frequency,while the plasma density first decreases and then increases.It was found that the electronegativity increases slightly with increasing pressure in the lowfrequency region,and it increases notably with increasing pressure in the high-frequency region.It was also observed that the frequency corresponding to the mode transition fromγto DA decreased when the secondary-electron emission coefficient was decreased.Finally,it was found that increasing the oxygen content weakens theγmode and enhances the DA mode.More importantly,the density of oxygen atoms and ozone will increase greatly with increasing oxygen content,which is of great significance for industrial applications.展开更多
Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical p...Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical particle solidification velocity for swamp and thus offers better dispersal.In the present investigation,the friction stir processing(FSP)is utilized to produce AZ31/Al_(2)O_(3)nanocomposites at various tool rotation speeds(i.e.,900,1200,and 1500 rpm)with an optimized 1.5%volume alumina(Al_(2)O_(3))reinforcement ratio.The mechanical and corrosion behavior of AZ31/Al_(2)O_(3)-developed nanocomposites was investigated and compared with that of the AZ31 base alloy.The AZ31 alloy experienced a comprehensive dynamic recrystallization during FSP,causing substantial grain refinement.Grain-size strengthening is the primary factor contributed to the enhancement in the strength of the fabricated nanocomposite.Tensile strength and yield strength values were lower than those for the base metal matrix,although an upward trend in both values has been observed with an increase in tool rotation speed.An 19.72%increase in hardness along with superior corrosion resistance was achieved compared to the base alloy at a tool rotational speed of 1500 rpm.The corrosion currents(Jcorr)of all samples dropped with increase in the rotational speed,in contrast to the corrosion potentials(Ecorr),which increased.The values of Jcorr of AZ31/Al_(2)O_(3)were 42.3%,56.8%,and 65.5%lower than those of AZ31 alloy at the chosen rotating speeds of 900,1200,and 1500 rpm,respectively.The corrosion behavior of friction stir processed nanocomposites have been addressed in this manuscript which has not been given sufficient attention in the existing literature.Further,this work offers an effective choice for the quality assurance of the FSP process of AZ31/Al_(2)O_(3)nanocomposites.The obtained results are relevant to the development of lightweight automobile and aerospace structures and components.展开更多
The manufacture process of 8mol% Y-2O-3 stabilized ZrO-2(YSZ) from nano powders, including the forming and sintering stages, was studied. During the forming process of YSZ powders, the relative density of YSZ increase...The manufacture process of 8mol% Y-2O-3 stabilized ZrO-2(YSZ) from nano powders, including the forming and sintering stages, was studied. During the forming process of YSZ powders, the relative density of YSZ increases lineally with the forming press,and the sintering linear shrinkage of YSZ to the forming press compiles to the parabola trend. When the forming press exceeding 500MPa, the samples with lower shrinkage and high density were obtained. The sintering temperature of YSZ decreases greatly because of the small size and high active surface of YSZ powders. As a result, the beginning sintering temperature of YSZ made in the experiment is as low as 825℃, and the end sintering temperature is 1300-1350℃. The relative density of YSZ ceramic by solid sintering at 1300-1350℃ is more than 97%, with little and small pores in the uniform microstructure.展开更多
基金supported by National Natural Science Foundation of China(Nos.11805107 and 12275039)the Fundamental Research Funds in Heilongjiang Provincial Universities of China(No.145309625)。
文摘In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations.Three discharge modes,i.e.,α,γ,and drift-ambipolar(DA),were considered in this study.The results show that a mode transition from theγ-DA hybrid mode dominated by theγmode to the DA-αhybrid mode dominated by the DA mode is induced by increasing the frequency from 100 k Hz to 40 MHz.Furthermore,the electron temperature decreases with increasing frequency,while the plasma density first decreases and then increases.It was found that the electronegativity increases slightly with increasing pressure in the lowfrequency region,and it increases notably with increasing pressure in the high-frequency region.It was also observed that the frequency corresponding to the mode transition fromγto DA decreased when the secondary-electron emission coefficient was decreased.Finally,it was found that increasing the oxygen content weakens theγmode and enhances the DA mode.More importantly,the density of oxygen atoms and ozone will increase greatly with increasing oxygen content,which is of great significance for industrial applications.
文摘Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical particle solidification velocity for swamp and thus offers better dispersal.In the present investigation,the friction stir processing(FSP)is utilized to produce AZ31/Al_(2)O_(3)nanocomposites at various tool rotation speeds(i.e.,900,1200,and 1500 rpm)with an optimized 1.5%volume alumina(Al_(2)O_(3))reinforcement ratio.The mechanical and corrosion behavior of AZ31/Al_(2)O_(3)-developed nanocomposites was investigated and compared with that of the AZ31 base alloy.The AZ31 alloy experienced a comprehensive dynamic recrystallization during FSP,causing substantial grain refinement.Grain-size strengthening is the primary factor contributed to the enhancement in the strength of the fabricated nanocomposite.Tensile strength and yield strength values were lower than those for the base metal matrix,although an upward trend in both values has been observed with an increase in tool rotation speed.An 19.72%increase in hardness along with superior corrosion resistance was achieved compared to the base alloy at a tool rotational speed of 1500 rpm.The corrosion currents(Jcorr)of all samples dropped with increase in the rotational speed,in contrast to the corrosion potentials(Ecorr),which increased.The values of Jcorr of AZ31/Al_(2)O_(3)were 42.3%,56.8%,and 65.5%lower than those of AZ31 alloy at the chosen rotating speeds of 900,1200,and 1500 rpm,respectively.The corrosion behavior of friction stir processed nanocomposites have been addressed in this manuscript which has not been given sufficient attention in the existing literature.Further,this work offers an effective choice for the quality assurance of the FSP process of AZ31/Al_(2)O_(3)nanocomposites.The obtained results are relevant to the development of lightweight automobile and aerospace structures and components.
基金Natural Science Foundation of Anhui Province(1908085ME127)Research Foundation of the Institute of Environmentfriendly Materials and Occupational Health(Wuhu),Anhui University of Science and Technology(ALW2021YF11)。
文摘The manufacture process of 8mol% Y-2O-3 stabilized ZrO-2(YSZ) from nano powders, including the forming and sintering stages, was studied. During the forming process of YSZ powders, the relative density of YSZ increases lineally with the forming press,and the sintering linear shrinkage of YSZ to the forming press compiles to the parabola trend. When the forming press exceeding 500MPa, the samples with lower shrinkage and high density were obtained. The sintering temperature of YSZ decreases greatly because of the small size and high active surface of YSZ powders. As a result, the beginning sintering temperature of YSZ made in the experiment is as low as 825℃, and the end sintering temperature is 1300-1350℃. The relative density of YSZ ceramic by solid sintering at 1300-1350℃ is more than 97%, with little and small pores in the uniform microstructure.