Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionalit...Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionality of buildings and result in significant economic losses,injuries,and casualties.In past decades,extensive studies have been conducted on the seismic performance and seismic design methods of NSCs.As the input for the seismic design of NSCs,floor response spectra(FRS)have attracted the attention of researchers worldwide.This paper presents a state-of-the-art review of FRS.Different methods for generating FRS are summarized and compared with those in current seismic design codes.A detailed review of the parameters influencing the FRS is presented.These parameters include the characteristics of ground motion excitation,supporting building and NSCs.The floor acceleration response and the FRS obtained from experimental studies and field observations during earthquakes are also discussed.Three RC frames are used in a case study to compare the peak floor acceleration(PFA)and FRS calculated from time history analyses(THA)with that generated using current seismic design codes and different methods in the literature.Major knowledge gaps are identified,including uncertainties associated with developing FRS,FRS generation methods for different types of buildings,the need for comprehensive studies on absolute acceleration,relative velocity,and relative displacement FRS,and the calibration of FRS by field observations during earthquakes.展开更多
Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully...Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully investigated.The compatibility of the FF-AF-A with the superplasticizers were also investigated,and the early hydration behavior and morphology of the hydration products of reference cement paste with the FF-AF-A were explored by hydration heat,X-ray diffractometry(XRD),and scanning electron microscopy(SEM).Test results indicated that adding the FF-AF-A at 8 wt%of the cement weight resulted in 2 min 35 s initial setting time and 6 min 30 s final setting time.The 1-day compressive strength of the cement mortar with 8 wt%of FF-AF-A reached 13.5 MPa,which represents an increase of 35%as compared to the strength of cement mortar without the FF-AF-A,and the 28-day compressive strength ratio was 119%.In addition,the FF-AF-A also showed good compatibility with different superplasticizer dosages.The results show that,when the FF-AF-A was added to the cement paste,it promoted the formation of ettringite crystals due to the aluminum ions(Al^(3+))and sulfate ions(SO_(4)^(2-))reacted with gypsum in the cement,as well as promoted the hydration of tricalcium aluminate(C_(3)A)and tricalcium silicate(C3S)leading to the overall structure becomes more compact.As a consequence,the hydration heat rate of the cement sharply increased,the cement paste setting time is shortened,and the compressive strength of cement mortar is improved.展开更多
For accelerator single-freedom nonlinear components,a general mathematicalmodel with its solution algorithm is developed,based on which a simulation type expertsystem can be built on IBM PC,automatically yielding any ...For accelerator single-freedom nonlinear components,a general mathematicalmodel with its solution algorithm is developed,based on which a simulation type expertsystem can be built on IBM PC,automatically yielding any order approximate analyti-cal solutions.展开更多
An expert system by Arity Prolog is developed for the transport operator of accelera-tor single-freedom nonlinear components. It automatically yields any order transport operatorand its inverse transport operator for ...An expert system by Arity Prolog is developed for the transport operator of accelera-tor single-freedom nonlinear components. It automatically yields any order transport operatorand its inverse transport operator for various accelerator single-freedom nonlinear components.As an example, the fifth order inverse transport operator derived by the expert system is given.展开更多
An expert system by Arity Prolog is developed for accelerator single-freedomnonlinear components.It automatically yields any order approximate analytical solu-tions for various accelerator single-freedom nonlinear com...An expert system by Arity Prolog is developed for accelerator single-freedomnonlinear components.It automatically yields any order approximate analytical solu-tions for various accelerator single-freedom nonlinear components.As an example,theeighth order approximate analytical solution is derived by this expert system for a gen-eral accelerator single-freedom nonlinear component,showing that the design of the ex-pert system is successful.展开更多
For accelerator single-freedom nonlinear components,the general theory of nonlinear transportis developed,and the algorithm for the inverse transport operator is given,based on which an expert sys-tem can be built to ...For accelerator single-freedom nonlinear components,the general theory of nonlinear transportis developed,and the algorithm for the inverse transport operator is given,based on which an expert sys-tem can be built to automatically yield any order transport operator and its inverse transport operator forvarious accelerator single-freedom nonlinear components.展开更多
Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,...Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,despite using an expensive high-end server.Heterogeneous computing,a combination of the Field Programmable Gate Array(FPGA)and a computer,is proposed as a solution to compute MD simulation efficiently.In such heterogeneous computation,communication between FPGA and Computer is necessary.One such MD simulation,explained in the paper,is the(Artificial Neural Network)ANN-based IAP computation of gold(Au_(147)&Au_(309))nanoparticles.MD simulation calculates the forces between atoms and the total energy of the chemical system.This work proposes the novel design and implementation of an ANN IAP-based MD simulation for Au_(147)&Au_(309) using communication protocols,such as Universal Asynchronous Receiver-Transmitter(UART)and Ethernet,for communication between the FPGA and the host computer.To improve the latency of MD simulation through heterogeneous computing,Universal Asynchronous Receiver-Transmitter(UART)and Ethernet communication protocols were explored to conduct MD simulation of 50,000 cycles.In this study,computation times of 17.54 and 18.70 h were achieved with UART and Ethernet,respectively,compared to the conventional server time of 29 h for Au_(147) nanoparticles.The results pave the way for the development of a Lab-on-a-chip application.展开更多
On the one hand,the separation of thousands of compounds in a complex extract is thrilling,but may be still be separated unsatisfactorily.Hence,the question arises where to stop in high-sophisticated separation scienc...On the one hand,the separation of thousands of compounds in a complex extract is thrilling,but may be still be separated unsatisfactorily.Hence,the question arises where to stop in high-sophisticated separation science?Which technical effort is economically justifiable in routine?On the other hand,the separation itself does not imply an effect-directed answer to questions such展开更多
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2019EEEVL0505,2019A02 and 2019B02。
文摘Nonstructural components(NSCs)are parts,elements,and subsystems that are not part of the primary loadbearing system of building structures but are subject to seismic loading.Damage to NSCs may disrupt the functionality of buildings and result in significant economic losses,injuries,and casualties.In past decades,extensive studies have been conducted on the seismic performance and seismic design methods of NSCs.As the input for the seismic design of NSCs,floor response spectra(FRS)have attracted the attention of researchers worldwide.This paper presents a state-of-the-art review of FRS.Different methods for generating FRS are summarized and compared with those in current seismic design codes.A detailed review of the parameters influencing the FRS is presented.These parameters include the characteristics of ground motion excitation,supporting building and NSCs.The floor acceleration response and the FRS obtained from experimental studies and field observations during earthquakes are also discussed.Three RC frames are used in a case study to compare the peak floor acceleration(PFA)and FRS calculated from time history analyses(THA)with that generated using current seismic design codes and different methods in the literature.Major knowledge gaps are identified,including uncertainties associated with developing FRS,FRS generation methods for different types of buildings,the need for comprehensive studies on absolute acceleration,relative velocity,and relative displacement FRS,and the calibration of FRS by field observations during earthquakes.
基金grateful funding provided by National Key Research and Development Program of China(Project 2019YFC1906202)Guangxi Key Research and Development Plan(Guike AB19259008)Major Science and Technology Special Project of Guangxi Province(Guike AA18242007-3).
文摘Based on aluminum sulfate,a fluorine-free and alkali-free liquid accelerator(FF-AF-A)was prepared in this study.The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully investigated.The compatibility of the FF-AF-A with the superplasticizers were also investigated,and the early hydration behavior and morphology of the hydration products of reference cement paste with the FF-AF-A were explored by hydration heat,X-ray diffractometry(XRD),and scanning electron microscopy(SEM).Test results indicated that adding the FF-AF-A at 8 wt%of the cement weight resulted in 2 min 35 s initial setting time and 6 min 30 s final setting time.The 1-day compressive strength of the cement mortar with 8 wt%of FF-AF-A reached 13.5 MPa,which represents an increase of 35%as compared to the strength of cement mortar without the FF-AF-A,and the 28-day compressive strength ratio was 119%.In addition,the FF-AF-A also showed good compatibility with different superplasticizer dosages.The results show that,when the FF-AF-A was added to the cement paste,it promoted the formation of ettringite crystals due to the aluminum ions(Al^(3+))and sulfate ions(SO_(4)^(2-))reacted with gypsum in the cement,as well as promoted the hydration of tricalcium aluminate(C_(3)A)and tricalcium silicate(C3S)leading to the overall structure becomes more compact.As a consequence,the hydration heat rate of the cement sharply increased,the cement paste setting time is shortened,and the compressive strength of cement mortar is improved.
文摘For accelerator single-freedom nonlinear components,a general mathematicalmodel with its solution algorithm is developed,based on which a simulation type expertsystem can be built on IBM PC,automatically yielding any order approximate analyti-cal solutions.
文摘An expert system by Arity Prolog is developed for the transport operator of accelera-tor single-freedom nonlinear components. It automatically yields any order transport operatorand its inverse transport operator for various accelerator single-freedom nonlinear components.As an example, the fifth order inverse transport operator derived by the expert system is given.
文摘An expert system by Arity Prolog is developed for accelerator single-freedomnonlinear components.It automatically yields any order approximate analytical solu-tions for various accelerator single-freedom nonlinear components.As an example,theeighth order approximate analytical solution is derived by this expert system for a gen-eral accelerator single-freedom nonlinear component,showing that the design of the ex-pert system is successful.
文摘For accelerator single-freedom nonlinear components,the general theory of nonlinear transportis developed,and the algorithm for the inverse transport operator is given,based on which an expert sys-tem can be built to automatically yield any order transport operator and its inverse transport operator forvarious accelerator single-freedom nonlinear components.
文摘Molecular Dynamics(MD)simulation for computing Interatomic Potential(IAP)is a very important High-Performance Computing(HPC)application.MD simulation on particles of experimental relevance takes huge computation time,despite using an expensive high-end server.Heterogeneous computing,a combination of the Field Programmable Gate Array(FPGA)and a computer,is proposed as a solution to compute MD simulation efficiently.In such heterogeneous computation,communication between FPGA and Computer is necessary.One such MD simulation,explained in the paper,is the(Artificial Neural Network)ANN-based IAP computation of gold(Au_(147)&Au_(309))nanoparticles.MD simulation calculates the forces between atoms and the total energy of the chemical system.This work proposes the novel design and implementation of an ANN IAP-based MD simulation for Au_(147)&Au_(309) using communication protocols,such as Universal Asynchronous Receiver-Transmitter(UART)and Ethernet,for communication between the FPGA and the host computer.To improve the latency of MD simulation through heterogeneous computing,Universal Asynchronous Receiver-Transmitter(UART)and Ethernet communication protocols were explored to conduct MD simulation of 50,000 cycles.In this study,computation times of 17.54 and 18.70 h were achieved with UART and Ethernet,respectively,compared to the conventional server time of 29 h for Au_(147) nanoparticles.The results pave the way for the development of a Lab-on-a-chip application.
文摘On the one hand,the separation of thousands of compounds in a complex extract is thrilling,but may be still be separated unsatisfactorily.Hence,the question arises where to stop in high-sophisticated separation science?Which technical effort is economically justifiable in routine?On the other hand,the separation itself does not imply an effect-directed answer to questions such