The emission spectra of a series of naphthalene end-labeled oligo-oxyethylene(N-P_n-N) and their facilitated transport of cations across liquid membranes have beeninvestigated. Alkali-metal cations enhance or inhibit ...The emission spectra of a series of naphthalene end-labeled oligo-oxyethylene(N-P_n-N) and their facilitated transport of cations across liquid membranes have beeninvestigated. Alkali-metal cations enhance or inhibit the intramolecular excimer formation ofN-P_n-N remarkably, suggesting that the polyether chain of N-P_n-N in solution complexes with thecations, and the orientation of the terminal chromophores depends on the cation size and the lengthof the polyether chain. These compounds are able to act as carriers to facilitate transport ofalkali-metal cations through organic liquid membranes. The transport efficiencies are comparablewith those of cyclic carriers such as crown ethers, and show remarkable selectivity.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions...As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions modify organic carbon (SOC), nitrogen (N) and phosphorus dynamics, bulk density and water-holding capacity and biological activities in soils, but little is known with regard to soil exchange properties. Variation in soil ex- changeable base cations was examined under C. microphylla plantations with an age sequence of 0, 5, 10, and 22 years in the Horqin Sandy Land, and at the depth of 0-10, 10-20, and 20-30 cm, respectively. C. microphylla has been planted on the non-vegetated sand dunes with similar physical-chemical soil properties. The results showed that exchangeable calcium (Ca), magnesium (Mg), and potassium (K), and cation exchange capacity (CEC) were significantly increased, and Ca saturation tended to decrease, while Mg and K saturations were increased with the plantation years. No difference was observed for exchangeable sodium (Na) neither with plantation years nor at soil depths. Of all the base cations and soil layers, exchangeable K at the depth of 0-10 cm accumulated most quickly, and it increased by 1.76, 3.16, and 4.25 times, respectively after C. microphylla was planted for 5, 10, and 22 years. Exchangeable Ca, Mg, and K, and CEC were significantly (P〈0.001) and positively correlated with SOC, total N, pH and electrical conductivity (EC). Soil pH and SOC are regarded as the main factors influencing the variation in ex- changeable cations, and the preferential absorption of cations by plants and different leaching rates of base cations that modify cation saturations under C. microphylla plantation. It is concluded that as a nitrogen-fixation species, C. microphylla plantation is beneficial to increasing exchangeable base cations and CEC in soils, and therefore can improve soil fertility and create favorable microenvironments for plants and creatures in the semi-arid sandy land ecosystems.展开更多
The effects of alkaline cations (M^+ = Li^+, Na^+, K^+, Cs^+)on the electrochemical synthesis of polyaniline were carfled out under cyclovoltammetric conditions using nitrates of Li^+, Na^+, K^+, and Cs^+ a...The effects of alkaline cations (M^+ = Li^+, Na^+, K^+, Cs^+)on the electrochemical synthesis of polyaniline were carfled out under cyclovoltammetric conditions using nitrates of Li^+, Na^+, K^+, and Cs^+ as the supporting electrolytes. The results show that the oxidation potentials of aniline in the electrolytes decrease as the protonation extent of aniline decreases from the fast scan, which is caused by the decrease of the ionic radius of alkaline metal ions at the same concentration of alkaline cations. With the scan number increasing, the deposit charge Q as the characteristic growth function also depends on the protonation of aniline, and it increases with the ionic radius of alkaline cations increasing. SEM images show the effect of alkaline cations on the morphology of polyaniline. It is clear that the ionic mobility of alkaline cations is further lower than that of W. Alkaline cations and counter-ions were the species responsible for the enhancement of Pani electrosynthesis. Therefore, this is exactly what SEM images show: a relatively rough fibrous structure in the case of Pani-H^+ suggesting a sponge-like structure and a highly orderly fiber-like structure in the case of Pani-M^+.展开更多
The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen bro...The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control(0 kg N ha-1 year-1),low N(50 kg N ha-1 year-1),medium N(100 kg N ha-1 year-1)and high N(150 kg N ha-1 year-1),and only three treatments(i.e.,control,low N,medium N)were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-use history.展开更多
As one of the most important soil components, montmorillonite plays a vital role in transport and retention of organic pollutants in soils. Ciprofloxacin (CIP), an antibiotic of fluoroquiolones, has been frequently ...As one of the most important soil components, montmorillonite plays a vital role in transport and retention of organic pollutants in soils. Ciprofloxacin (CIP), an antibiotic of fluoroquiolones, has been frequently detected in water and soil environments due to its wide use in human and veterinary medicine. In this study, the adsorption of CIP onto different homoionic montmorillonite such as Na-, Ca- and Al-MMT was investigated, and the influence of types and charges of exchangeable cations in the interlayer of montmorillonite on CIP adsorption was evaluated. The results showed that different homoionic montmorillonite exhibited different sorption capacity of CIP. At pH 3, the sorption capacity of CIP decreased in the order Na-MMT Ca-MMT Al-MMT, following the lyotropic series. When solution pH increased to 11, the sorption capacity of CIP followed the order Ca-MMT Al-MMT Na-MMT. Accompanying CIP adsorption on Ca-MMT, a certain amount of Ca2+ was released into solution. Compared to pH 3, the lower Ca concentration in solution at pH 11 indicated that the adsorption of CIP on Ca-MMT at strong alkaline pH was no longer via cation exchange, and surface complexation or cation bridging might contribute to CIP adsorption. The adsorption of CIP on Na- and Ca-MMT at pH 3 and 11 resulted in the expansion of d-spacing, indicative of intercalation of CIP into the interlayer space of the montmorillonite. However, a decrease of d-spacing was observed when CIP adsorbed on Al-MMT at pH 11, which might be attributed to the dissolution of Al-CIP complex formed between CIP and Al3+ in the interlayer of montmorillonite. The results suggest that the types and charges of exchangeable cations in the interlayer of montmorillonite play an important role in CIP adsorption on montmorillonite.展开更多
This paper determined cations and anions concentrations, Total Kjeldahl Nitrogen (TKN), and heavy metals content in sewage sludge collected from the drying beds of wastewater treatment plant in Gaza. The aim was to te...This paper determined cations and anions concentrations, Total Kjeldahl Nitrogen (TKN), and heavy metals content in sewage sludge collected from the drying beds of wastewater treatment plant in Gaza. The aim was to test the possibility of using this sewage sludge as an alternative source of mineral fertilizers. Many instruments were used in this work: flame photometry (K, Na), EDTA titration (Ca, Mg), the turbidity method () , spectrophotometer (turbidity), ascorbic acid method (orthophosphate), titrimetric method (Cl﹣), inductive coupled plasma analyzer (ICP, heavy metals). All the processes of experiments and analyses were described clearly for reference. Results showed that concentrations of Na﹢, K﹢, Ca2﹢ and Mg2﹢ were 28.93, 2.53, 271 and 177 mg/kg respectively whereas? were 0.434, 18.59, 0.87 and 0.026 g/kg respectively. The concentrations of Fe, Cu, Pb, Zn and Mn were 125.12, 172.56, 76.88, 218.73 and 157.56 mg/kg respectively. These results indicate that sewage sludge from Gaza contained high fractions of most plant nutrients accordingly, and it may be advantageous to use the sludge as a natural source of plant fertilizers.展开更多
The effects of different structures of 2:1 layer minerals, layer charge location, and changes of structure and charge during the weathering process on the fixation and release of interlayer cations are reviewed. It co...The effects of different structures of 2:1 layer minerals, layer charge location, and changes of structure and charge during the weathering process on the fixation and release of interlayer cations are reviewed. It could be concluded that the fixation capacity is determined by the total amount of interlayer charge originating from both octahedral and tetrahedral sheets. The relationship between interlayer cation fixation and octahedral structure of the secondary minerals may be different from that of the primary minerals. The oxidation and reduction of cations with variable valence can greatly influence the cation-fixation capacity.展开更多
The electrical conductivities (ECs) of suspensions containing 25 and 30 gkg^(-1) solids prepared from the electrodialyzed clay fraction (< 2μm in diameter) of latosol,yellow-brown soil, and black soil, dispersed i...The electrical conductivities (ECs) of suspensions containing 25 and 30 gkg^(-1) solids prepared from the electrodialyzed clay fraction (< 2μm in diameter) of latosol,yellow-brown soil, and black soil, dispersed in various nitrate solutions having concentrations of 1X 10^(-4)/z mol L^(-1), where z is the valence, and in distilled water, were measured at fieldstrengths ranging from 14 kV cm^(-1) to 210 kV cm^(-1). On the basis of analyses of the chargedensity and exchangeable ion composition on the surfaces of soil particles in the suspensions, andof the characters of the EC-field strength curves of the various suspensions, it was inferred thatthe increment of EC (ΔEC) and/or relative electrical conductivity (REC) can indicate the bondingstrength between cations and soil particles. The bonding strengths of various cations with the soilsdiminished in the order: K^+ > Zn^(2+) > Mg^(2+) = Ca^(2+) > Na^+ for latosol, Ca^(2+) > Zn^(2+) >Mg^(2+) = K^+ > Na^+ for yellow-brown soil, and Zn^(2+) ≥ Ca^(2+) ≥ Mg^(2+) > K^+ > Na^+ for blacksoil.展开更多
Alkali and alkaline‐earth metals from fly ash have a significant deactivation effect on catalysts used for selective catalytic reduction of NOx by NH3(NH3‐SCR).Bromides are considered effective additives to improve ...Alkali and alkaline‐earth metals from fly ash have a significant deactivation effect on catalysts used for selective catalytic reduction of NOx by NH3(NH3‐SCR).Bromides are considered effective additives to improve Hg0 oxidation on SCR catalysts.In this work,the effects of different bromides(NH4Br,NaBr,KBr,and CaBr2)on a commercial V2O5‐WO3/TiO2 catalyst were studied.NOx conversion decreased significantly over the KBr‐poisoned catalyst(denoted as L‐KBr),while that over NaBr‐and CaBr2‐poisoned catalysts(denoted as L‐NaBr and L‐CaBr,respectivity)decreased to a lesser extent compared with the fresh sample.Poor N2 selectivity was observed over L‐NaBr,L‐KBr and L‐CaBr catalysts.The decrease in the ratio of chemisorbed oxygen to total surface oxygen(Oα/(Oα+Oβ+Ow)),reducibility and surface acidity might contribute to the poor activity and N2 selectivity over L‐KBr catalyst.The increased Oαratio was conducive to the enhanced reducibility of L‐CaBr.Combined with enhanced surface acidity,this might offset the negative effect of the loss of active sites by CaBr2 covering.The overoxidation of NH3 and poor N2 selectivity in NH3 oxidation should retard the SCR activity at high temperatures over L‐CaBr catalyst.The increased basicity might contribute to increased NOx adsorption on L‐KBr and L‐CaBr catalysts.A correlation between the acid‐basic and redox properties of bromide‐poisoned catalysts and their catalytic properties is established.展开更多
An ab initio molecular orbital study was performed to determine the effects of anions and cations on the π-complexation of C_2H_4 on MX(M=Ag, Cu; X=F, Cl). The calculated results show the following order of adsorptio...An ab initio molecular orbital study was performed to determine the effects of anions and cations on the π-complexation of C_2H_4 on MX(M=Ag, Cu; X=F, Cl). The calculated results show the following order of adsorption strength: F ->Cl - for anions; Cu +>Ag + for cations. The results can be explained by the detailed analysis of atomic charge, orbital energy and orbital population by using the natural bond orbital(NBO) theory: (1) anions with stronger electronegativity can attract more electrons from the s orbital of M, while at the same time it does not obviously weaken the d orbital occupation of M, thus the nearly vacant s orbital and the sufficiently filled d orbitals of M help with forming σ-donation and d-π * backdonation with the π orbital and the π * orbital of olefin, respectively; (2) a smaller energy gap of symmetry-adapted orbitals between olefin and a cation can favor the electron transfer, that is why Cu + forms stronger adsorption with olefin than Ag + does.展开更多
The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grass...The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grassland ecosystems.Soil exchangeable base cations and cation ratios were examined in a 11-year experiment with sheep manure application rates 0–1,500 g/(m2?a) in a semi-arid steppe in Inner Mongolia of China,aiming to clarify the relationships of base cations with soil p H,buffer capacity and fertility.Results showed that CEC and contents of exchangeable calcium(Ca2+),magnesium(Mg2+),potassium(K+) and sodium(Na+) were significantly increased,and Ca2+ saturation tended to decrease,while K+ saturation tended to increase with the increases of sheep manure application rates.The Ca2+/Mg2+ and Ca2+/K+ ratios decreased,while Mg2+,K+ and Na+ saturations increased with increasing manure application rates.Both base cations and CEC were significantly and positively correlated with soil organic carbon(SOC) and soil p H.The increases of SOC and soil p H would be the dominant factors that contribute to the increase of cations in soil.On a comparison with the initial soil p H before the experiment,we deduced that sheep manure application could partly buffer soil p H decrease potentially induced by atmospheric deposition of nitrogen and sulfur.Our results indicate that sheep manure application is beneficial to the maintenance of base cations and the buffering of soil acidification,and therefore can improve soil fertility in the semi-arid steppes of northeastern China.展开更多
Steel bar corrosion on electrolytes and the influence of cation were investigated. Three electrolytes of Ca(OH)2, NaOH and KOH with pH levels of 12.5, 11.5, 10.5, 9.5, 8.5 were prepared, meanwhile, the methods of fr...Steel bar corrosion on electrolytes and the influence of cation were investigated. Three electrolytes of Ca(OH)2, NaOH and KOH with pH levels of 12.5, 11.5, 10.5, 9.5, 8.5 were prepared, meanwhile, the methods of free corrosion potential and electrochemical impedance spectra (EIS) were used to evaluate the influence of cations on the depassivation of the steel bar in electrolytes. The experimental results indicate that the initial corrosion pH value of the steel bar is influenced by the cation in electrolyte and the influence of K+ in electrolyte is the most remarkable, followed by Na+ and Ca2+. The initial corrosion pH values are 10.5 in KOH electrolyte, 9.5 in NaOH electrolyte and lower than 8.5 in Ca(OH)2 electrolyte.展开更多
Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This stud...Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.展开更多
The condensation of DNA induced by spermine is studied by atomic force microscopy (AFM) and molecular dynamics (MD) simulation in this paper. In our experiments, an equivalent amount of multivalent cations is adde...The condensation of DNA induced by spermine is studied by atomic force microscopy (AFM) and molecular dynamics (MD) simulation in this paper. In our experiments, an equivalent amount of multivalent cations is added to the DNA solutions in different numbers of steps, and we find that the process of DNA condensation strongly depends on the speed of adding cations. That is, the slower the spermine cations are added, the slower the DNA aggregates. The MD and steered molecular dynamics (SMD) simulation results agree well with the experimental results, and the simulation data also show that the more steps of adding multivalent cations there are, the more compact the condensed DNA structure will be. This investigation can help us to control DNA condensation and understand the complicated structures of DNA--cation complexes.展开更多
Modification of transition metal cations to polymer-stabilized Pt colloidal clusters modified with cinchonidine was studied in enantioselective hydrogenation of methyl pyruvate.Compared to the enantiomeric excess(e.e....Modification of transition metal cations to polymer-stabilized Pt colloidal clusters modified with cinchonidine was studied in enantioselective hydrogenation of methyl pyruvate.Compared to the enantiomeric excess(e.e.)value(71.4%) obtained without the presence of metal cations,obvious e.e.enhancement(up to 82.5%)was resulted from the addition of Zn^(2+) but with a certain decrease in activity.The reaction parameters in the presence of Zn^(2+) were also studied.It was found that the Pt colloidal catalysts in the presence of metal cations performed very differently from that in the absence of metal cations.展开更多
While serious stability issues impede the commercialization of perovskite solar cells(PSCs),two-dime nsional(2D)perovskites based on fluorinated bulky cations have emerged as more intrinsically stable materials.Howeve...While serious stability issues impede the commercialization of perovskite solar cells(PSCs),two-dime nsional(2D)perovskites based on fluorinated bulky cations have emerged as more intrinsically stable materials.However,the influence of fluorination degree of the bulky aromatic cation on the per-formance of resulting PSCs has not been scrutinized.Here,2D perovskites(FxPEA)_(2)PbI_(4)(x=1,2,3,5)are grown in situ on the surface of the three-dime nsion al(3D)perovskite and dem on strate effective passivation of the surface defects of 3D perovskite.The power conversion efficiency(PCE)of the optimized devices were boosted from 20.75%for the control device to 21.09%,22.06%,22.74%and 21.86%for 2D/3D devices treated with 4-fluorophenethylamine iodide,3,5-difluorophenylethylamine iodide,2,4,5-trifluoroethylphenylethylamine iodide,and 1,2,3,4,5-pentafluorophenylethylamine iodide,respectively.We firstly reported two unexplored RP-type layered perovskites with F_(2)PEAI and F_(3)PEAI as bulky cations.The combined experimental and theoretical analysis revealed the reasons behind the various morphology,device performances,dynamic behavior,and humidity stability.The best performing F_(5)PEAI-treated device retaining 95.0%of its initial PCE under ambient atmosphere(with RH of 60%±5%)without encapsulation for 300 h storage.This work provides useful guidance for selecting fluorinated bulky cations with different molecular electronic properties,which will play an essential role in further improving the performance/stability of PSCs for the sake of further commercialization.展开更多
It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^...It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^+,HCO3^-,Cl^-,Br^-,I^-)on the current density and product selectivity for the ERCO2 into formic acid(HCOOH)on the SnO2/carbon paper(Sn O2/C)electrode.Results of the ERCO2 experiments show that for the cations,the promotion effects on current density and faradaic efficiencies(FEs)are in the order of Li^+b Na^+b K^+b Cs^+b Rb^+.For the anions,the current density values are in the order of Na HCO3 b NaClb Na Br b Na I and KHCO3 b KCl≈KI b KBr,respectively,and that on the FEs for the formation of the HCOOH(FEHCOOH)is HCO3-b Cl-b Br-b I-.Based on this result,the effects of alkali metal cations and anions on ERCO2 are discussed.展开更多
Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and te...Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and technologies.In practice,the magnetometer response is not rigorously proportional to the measured transverse magnetic fields and the existing fundamental analytical model of this magnetometer is effective only when the amplitudes of the measured fields are very small.In this paper,we present a modified analytical model to characterize the practical performance of the magnetometer more definitely.We find out how the longitudinal magnetization of the alkali metal atoms vary with larger transverse fields.The linear-response capacity of the magnetometer is determined by these factors:the amplitude and frequency of the longitudinal carrier field,longitudinal and transverse spin relaxation time of the alkali spins and rotation frequency of the transverse fields.We give a detailed and rigorous theoretical derivation by using the perturbation-iteration method and simulation experiments are conducted to verify the validity and correctness of the proposed modified model.This model can be helpful for measuring larger fields more accurately and configuring a desirable magnetometer with proper linear range.展开更多
The self-aldol condensation of aldehydes was investigated with rare-earth cations stabilized by[Si]Beta zeolites in parallel with bulk rare-earth metal oxides.Good catalytic performance was achieved with all Lewis aci...The self-aldol condensation of aldehydes was investigated with rare-earth cations stabilized by[Si]Beta zeolites in parallel with bulk rare-earth metal oxides.Good catalytic performance was achieved with all Lewis acidic rare-earth cations stabilized by zeolites and yttrium appeared to be the best metal choice.According to the results of several complementary techniques,i.e.,temperature-programmed surface reactions,in situ diffuse reflectance infrared Fourier transform spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,the reaction pathway and mechanism of the aldehyde self-aldol condensation over Y/Beta catalyst were studied in more detail.Density functional theory calculations revealed that aldol dehydration was the rate-limiting step.The hydroxyl group at the open yttrium site played an important role in stabilizing the transition state of the aldol dimer reducing the energy barrier for its hydration.Lewis acidic Y(OSi)(OH)2 stabilized by zeolites in open configurations were identified as the preferred active sites for the self-aldol condensation of aldehydes.展开更多
文摘The emission spectra of a series of naphthalene end-labeled oligo-oxyethylene(N-P_n-N) and their facilitated transport of cations across liquid membranes have beeninvestigated. Alkali-metal cations enhance or inhibit the intramolecular excimer formation ofN-P_n-N remarkably, suggesting that the polyether chain of N-P_n-N in solution complexes with thecations, and the orientation of the terminal chromophores depends on the cation size and the lengthof the polyether chain. These compounds are able to act as carriers to facilitate transport ofalkali-metal cations through organic liquid membranes. The transport efficiencies are comparablewith those of cyclic carriers such as crown ethers, and show remarkable selectivity.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金supported by the National Key Basic Research Program of China (2011CB403204)the Natural Science Foundation of China (31000200)
文摘As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions modify organic carbon (SOC), nitrogen (N) and phosphorus dynamics, bulk density and water-holding capacity and biological activities in soils, but little is known with regard to soil exchange properties. Variation in soil ex- changeable base cations was examined under C. microphylla plantations with an age sequence of 0, 5, 10, and 22 years in the Horqin Sandy Land, and at the depth of 0-10, 10-20, and 20-30 cm, respectively. C. microphylla has been planted on the non-vegetated sand dunes with similar physical-chemical soil properties. The results showed that exchangeable calcium (Ca), magnesium (Mg), and potassium (K), and cation exchange capacity (CEC) were significantly increased, and Ca saturation tended to decrease, while Mg and K saturations were increased with the plantation years. No difference was observed for exchangeable sodium (Na) neither with plantation years nor at soil depths. Of all the base cations and soil layers, exchangeable K at the depth of 0-10 cm accumulated most quickly, and it increased by 1.76, 3.16, and 4.25 times, respectively after C. microphylla was planted for 5, 10, and 22 years. Exchangeable Ca, Mg, and K, and CEC were significantly (P〈0.001) and positively correlated with SOC, total N, pH and electrical conductivity (EC). Soil pH and SOC are regarded as the main factors influencing the variation in ex- changeable cations, and the preferential absorption of cations by plants and different leaching rates of base cations that modify cation saturations under C. microphylla plantation. It is concluded that as a nitrogen-fixation species, C. microphylla plantation is beneficial to increasing exchangeable base cations and CEC in soils, and therefore can improve soil fertility and create favorable microenvironments for plants and creatures in the semi-arid sandy land ecosystems.
基金This project was financially supported by the National Natural Science Foundation of China (No. 50274010)the National High-Tech Research and Development Program of China ("863" Program, No. 2002AA-302404).
文摘The effects of alkaline cations (M^+ = Li^+, Na^+, K^+, Cs^+)on the electrochemical synthesis of polyaniline were carfled out under cyclovoltammetric conditions using nitrates of Li^+, Na^+, K^+, and Cs^+ as the supporting electrolytes. The results show that the oxidation potentials of aniline in the electrolytes decrease as the protonation extent of aniline decreases from the fast scan, which is caused by the decrease of the ionic radius of alkaline metal ions at the same concentration of alkaline cations. With the scan number increasing, the deposit charge Q as the characteristic growth function also depends on the protonation of aniline, and it increases with the ionic radius of alkaline cations increasing. SEM images show the effect of alkaline cations on the morphology of polyaniline. It is clear that the ionic mobility of alkaline cations is further lower than that of W. Alkaline cations and counter-ions were the species responsible for the enhancement of Pani electrosynthesis. Therefore, this is exactly what SEM images show: a relatively rough fibrous structure in the case of Pani-H^+ suggesting a sponge-like structure and a highly orderly fiber-like structure in the case of Pani-M^+.
基金Project supported by the National Natural Science Foundation of China(No.30670392)the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.KZCX2-YW-432 and KSCX2-SW-133)
文摘The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control(0 kg N ha-1 year-1),low N(50 kg N ha-1 year-1),medium N(100 kg N ha-1 year-1)and high N(150 kg N ha-1 year-1),and only three treatments(i.e.,control,low N,medium N)were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-use history.
基金Funded by the Key Project of Chinese Ministry of Education (No. 107076)Wisconsin Groundwater Research Council to Z.Li
文摘As one of the most important soil components, montmorillonite plays a vital role in transport and retention of organic pollutants in soils. Ciprofloxacin (CIP), an antibiotic of fluoroquiolones, has been frequently detected in water and soil environments due to its wide use in human and veterinary medicine. In this study, the adsorption of CIP onto different homoionic montmorillonite such as Na-, Ca- and Al-MMT was investigated, and the influence of types and charges of exchangeable cations in the interlayer of montmorillonite on CIP adsorption was evaluated. The results showed that different homoionic montmorillonite exhibited different sorption capacity of CIP. At pH 3, the sorption capacity of CIP decreased in the order Na-MMT Ca-MMT Al-MMT, following the lyotropic series. When solution pH increased to 11, the sorption capacity of CIP followed the order Ca-MMT Al-MMT Na-MMT. Accompanying CIP adsorption on Ca-MMT, a certain amount of Ca2+ was released into solution. Compared to pH 3, the lower Ca concentration in solution at pH 11 indicated that the adsorption of CIP on Ca-MMT at strong alkaline pH was no longer via cation exchange, and surface complexation or cation bridging might contribute to CIP adsorption. The adsorption of CIP on Na- and Ca-MMT at pH 3 and 11 resulted in the expansion of d-spacing, indicative of intercalation of CIP into the interlayer space of the montmorillonite. However, a decrease of d-spacing was observed when CIP adsorbed on Al-MMT at pH 11, which might be attributed to the dissolution of Al-CIP complex formed between CIP and Al3+ in the interlayer of montmorillonite. The results suggest that the types and charges of exchangeable cations in the interlayer of montmorillonite play an important role in CIP adsorption on montmorillonite.
文摘This paper determined cations and anions concentrations, Total Kjeldahl Nitrogen (TKN), and heavy metals content in sewage sludge collected from the drying beds of wastewater treatment plant in Gaza. The aim was to test the possibility of using this sewage sludge as an alternative source of mineral fertilizers. Many instruments were used in this work: flame photometry (K, Na), EDTA titration (Ca, Mg), the turbidity method () , spectrophotometer (turbidity), ascorbic acid method (orthophosphate), titrimetric method (Cl﹣), inductive coupled plasma analyzer (ICP, heavy metals). All the processes of experiments and analyses were described clearly for reference. Results showed that concentrations of Na﹢, K﹢, Ca2﹢ and Mg2﹢ were 28.93, 2.53, 271 and 177 mg/kg respectively whereas? were 0.434, 18.59, 0.87 and 0.026 g/kg respectively. The concentrations of Fe, Cu, Pb, Zn and Mn were 125.12, 172.56, 76.88, 218.73 and 157.56 mg/kg respectively. These results indicate that sewage sludge from Gaza contained high fractions of most plant nutrients accordingly, and it may be advantageous to use the sludge as a natural source of plant fertilizers.
基金Project(No.39770427)supported by the National Natural Science Foundation of China.
文摘The effects of different structures of 2:1 layer minerals, layer charge location, and changes of structure and charge during the weathering process on the fixation and release of interlayer cations are reviewed. It could be concluded that the fixation capacity is determined by the total amount of interlayer charge originating from both octahedral and tetrahedral sheets. The relationship between interlayer cation fixation and octahedral structure of the secondary minerals may be different from that of the primary minerals. The oxidation and reduction of cations with variable valence can greatly influence the cation-fixation capacity.
基金Project(Nos.49771046 and 49831005)supported by the National Natural Science Foundation of China and the Center for International Cooperation,Ministry of Foreign Affairs,State of Israel.
文摘The electrical conductivities (ECs) of suspensions containing 25 and 30 gkg^(-1) solids prepared from the electrodialyzed clay fraction (< 2μm in diameter) of latosol,yellow-brown soil, and black soil, dispersed in various nitrate solutions having concentrations of 1X 10^(-4)/z mol L^(-1), where z is the valence, and in distilled water, were measured at fieldstrengths ranging from 14 kV cm^(-1) to 210 kV cm^(-1). On the basis of analyses of the chargedensity and exchangeable ion composition on the surfaces of soil particles in the suspensions, andof the characters of the EC-field strength curves of the various suspensions, it was inferred thatthe increment of EC (ΔEC) and/or relative electrical conductivity (REC) can indicate the bondingstrength between cations and soil particles. The bonding strengths of various cations with the soilsdiminished in the order: K^+ > Zn^(2+) > Mg^(2+) = Ca^(2+) > Na^+ for latosol, Ca^(2+) > Zn^(2+) >Mg^(2+) = K^+ > Na^+ for yellow-brown soil, and Zn^(2+) ≥ Ca^(2+) ≥ Mg^(2+) > K^+ > Na^+ for blacksoil.
基金supported by the National Key R&D Program of China(2016YFC0203900,2016YFC0203901)National Natural Science Foundation of China(51778619,21577173)~~
文摘Alkali and alkaline‐earth metals from fly ash have a significant deactivation effect on catalysts used for selective catalytic reduction of NOx by NH3(NH3‐SCR).Bromides are considered effective additives to improve Hg0 oxidation on SCR catalysts.In this work,the effects of different bromides(NH4Br,NaBr,KBr,and CaBr2)on a commercial V2O5‐WO3/TiO2 catalyst were studied.NOx conversion decreased significantly over the KBr‐poisoned catalyst(denoted as L‐KBr),while that over NaBr‐and CaBr2‐poisoned catalysts(denoted as L‐NaBr and L‐CaBr,respectivity)decreased to a lesser extent compared with the fresh sample.Poor N2 selectivity was observed over L‐NaBr,L‐KBr and L‐CaBr catalysts.The decrease in the ratio of chemisorbed oxygen to total surface oxygen(Oα/(Oα+Oβ+Ow)),reducibility and surface acidity might contribute to the poor activity and N2 selectivity over L‐KBr catalyst.The increased Oαratio was conducive to the enhanced reducibility of L‐CaBr.Combined with enhanced surface acidity,this might offset the negative effect of the loss of active sites by CaBr2 covering.The overoxidation of NH3 and poor N2 selectivity in NH3 oxidation should retard the SCR activity at high temperatures over L‐CaBr catalyst.The increased basicity might contribute to increased NOx adsorption on L‐KBr and L‐CaBr catalysts.A correlation between the acid‐basic and redox properties of bromide‐poisoned catalysts and their catalytic properties is established.
文摘An ab initio molecular orbital study was performed to determine the effects of anions and cations on the π-complexation of C_2H_4 on MX(M=Ag, Cu; X=F, Cl). The calculated results show the following order of adsorption strength: F ->Cl - for anions; Cu +>Ag + for cations. The results can be explained by the detailed analysis of atomic charge, orbital energy and orbital population by using the natural bond orbital(NBO) theory: (1) anions with stronger electronegativity can attract more electrons from the s orbital of M, while at the same time it does not obviously weaken the d orbital occupation of M, thus the nearly vacant s orbital and the sufficiently filled d orbitals of M help with forming σ-donation and d-π * backdonation with the π orbital and the π * orbital of olefin, respectively; (2) a smaller energy gap of symmetry-adapted orbitals between olefin and a cation can favor the electron transfer, that is why Cu + forms stronger adsorption with olefin than Ag + does.
基金funded by the National Natural Science Foundation of China (41371251,31370009)the National Basic Research Program of China (2011CB403204)
文摘The long-term productivity of a soil is greatly influenced by cation exchange capacity(CEC).Moreover,interactions between dominant base cations and other nutrients are important for the health and stability of grassland ecosystems.Soil exchangeable base cations and cation ratios were examined in a 11-year experiment with sheep manure application rates 0–1,500 g/(m2?a) in a semi-arid steppe in Inner Mongolia of China,aiming to clarify the relationships of base cations with soil p H,buffer capacity and fertility.Results showed that CEC and contents of exchangeable calcium(Ca2+),magnesium(Mg2+),potassium(K+) and sodium(Na+) were significantly increased,and Ca2+ saturation tended to decrease,while K+ saturation tended to increase with the increases of sheep manure application rates.The Ca2+/Mg2+ and Ca2+/K+ ratios decreased,while Mg2+,K+ and Na+ saturations increased with increasing manure application rates.Both base cations and CEC were significantly and positively correlated with soil organic carbon(SOC) and soil p H.The increases of SOC and soil p H would be the dominant factors that contribute to the increase of cations in soil.On a comparison with the initial soil p H before the experiment,we deduced that sheep manure application could partly buffer soil p H decrease potentially induced by atmospheric deposition of nitrogen and sulfur.Our results indicate that sheep manure application is beneficial to the maintenance of base cations and the buffering of soil acidification,and therefore can improve soil fertility in the semi-arid steppes of northeastern China.
基金Funded by the National Natural Science Foundation of China(No.50978085 and 50808066)the Six Talent Peak Project (Class A) of Jiangsu Provincethe Research Funds of Hohai University for the Central Universities(No. 2010B07514)
文摘Steel bar corrosion on electrolytes and the influence of cation were investigated. Three electrolytes of Ca(OH)2, NaOH and KOH with pH levels of 12.5, 11.5, 10.5, 9.5, 8.5 were prepared, meanwhile, the methods of free corrosion potential and electrochemical impedance spectra (EIS) were used to evaluate the influence of cations on the depassivation of the steel bar in electrolytes. The experimental results indicate that the initial corrosion pH value of the steel bar is influenced by the cation in electrolyte and the influence of K+ in electrolyte is the most remarkable, followed by Na+ and Ca2+. The initial corrosion pH values are 10.5 in KOH electrolyte, 9.5 in NaOH electrolyte and lower than 8.5 in Ca(OH)2 electrolyte.
基金Project supported by the National Natural Science Foundation of China (Nos. 30590381-03 and 30570350).
文摘Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20974081, 20934004, 21174131, and 21104060)the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y4110357)
文摘The condensation of DNA induced by spermine is studied by atomic force microscopy (AFM) and molecular dynamics (MD) simulation in this paper. In our experiments, an equivalent amount of multivalent cations is added to the DNA solutions in different numbers of steps, and we find that the process of DNA condensation strongly depends on the speed of adding cations. That is, the slower the spermine cations are added, the slower the DNA aggregates. The MD and steered molecular dynamics (SMD) simulation results agree well with the experimental results, and the simulation data also show that the more steps of adding multivalent cations there are, the more compact the condensed DNA structure will be. This investigation can help us to control DNA condensation and understand the complicated structures of DNA--cation complexes.
基金The project is partially supported by the Natural Science Foundation of Hubei Province Contract(No.2003ABA072)
文摘Modification of transition metal cations to polymer-stabilized Pt colloidal clusters modified with cinchonidine was studied in enantioselective hydrogenation of methyl pyruvate.Compared to the enantiomeric excess(e.e.)value(71.4%) obtained without the presence of metal cations,obvious e.e.enhancement(up to 82.5%)was resulted from the addition of Zn^(2+) but with a certain decrease in activity.The reaction parameters in the presence of Zn^(2+) were also studied.It was found that the Pt colloidal catalysts in the presence of metal cations performed very differently from that in the absence of metal cations.
基金financial support from the National Natural Science Foundation of China (Grant No. 21975260)the financial support from the National Natural Science Foundation of China (Grant No. 22078241).
文摘While serious stability issues impede the commercialization of perovskite solar cells(PSCs),two-dime nsional(2D)perovskites based on fluorinated bulky cations have emerged as more intrinsically stable materials.However,the influence of fluorination degree of the bulky aromatic cation on the per-formance of resulting PSCs has not been scrutinized.Here,2D perovskites(FxPEA)_(2)PbI_(4)(x=1,2,3,5)are grown in situ on the surface of the three-dime nsion al(3D)perovskite and dem on strate effective passivation of the surface defects of 3D perovskite.The power conversion efficiency(PCE)of the optimized devices were boosted from 20.75%for the control device to 21.09%,22.06%,22.74%and 21.86%for 2D/3D devices treated with 4-fluorophenethylamine iodide,3,5-difluorophenylethylamine iodide,2,4,5-trifluoroethylphenylethylamine iodide,and 1,2,3,4,5-pentafluorophenylethylamine iodide,respectively.We firstly reported two unexplored RP-type layered perovskites with F_(2)PEAI and F_(3)PEAI as bulky cations.The combined experimental and theoretical analysis revealed the reasons behind the various morphology,device performances,dynamic behavior,and humidity stability.The best performing F_(5)PEAI-treated device retaining 95.0%of its initial PCE under ambient atmosphere(with RH of 60%±5%)without encapsulation for 300 h storage.This work provides useful guidance for selecting fluorinated bulky cations with different molecular electronic properties,which will play an essential role in further improving the performance/stability of PSCs for the sake of further commercialization.
基金financially supported by International Academic Cooperation and Exchange Program of Shanghai Science and Technology Committee(18160723600)Scientific Research and Technology Development Plan of Guangxi(GUIKE AD17195084)。
文摘It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^+,HCO3^-,Cl^-,Br^-,I^-)on the current density and product selectivity for the ERCO2 into formic acid(HCOOH)on the SnO2/carbon paper(Sn O2/C)electrode.Results of the ERCO2 experiments show that for the cations,the promotion effects on current density and faradaic efficiencies(FEs)are in the order of Li^+b Na^+b K^+b Cs^+b Rb^+.For the anions,the current density values are in the order of Na HCO3 b NaClb Na Br b Na I and KHCO3 b KCl≈KI b KBr,respectively,and that on the FEs for the formation of the HCOOH(FEHCOOH)is HCO3-b Cl-b Br-b I-.Based on this result,the effects of alkali metal cations and anions on ERCO2 are discussed.
基金the Hunan Graduate Research and Innovation Project(Grant No.CX2018B009)the Natural Science Foundation of Hunan(Grant No.2018JJ3608)+1 种基金the Research Project of National University of Defense Technology(Grant Nos.ZK170204 and ZZKY-YX-07-02)the National Natural Science Foundation of China(Grant Nos.61671458 and 61701515).
文摘Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and technologies.In practice,the magnetometer response is not rigorously proportional to the measured transverse magnetic fields and the existing fundamental analytical model of this magnetometer is effective only when the amplitudes of the measured fields are very small.In this paper,we present a modified analytical model to characterize the practical performance of the magnetometer more definitely.We find out how the longitudinal magnetization of the alkali metal atoms vary with larger transverse fields.The linear-response capacity of the magnetometer is determined by these factors:the amplitude and frequency of the longitudinal carrier field,longitudinal and transverse spin relaxation time of the alkali spins and rotation frequency of the transverse fields.We give a detailed and rigorous theoretical derivation by using the perturbation-iteration method and simulation experiments are conducted to verify the validity and correctness of the proposed modified model.This model can be helpful for measuring larger fields more accurately and configuring a desirable magnetometer with proper linear range.
文摘The self-aldol condensation of aldehydes was investigated with rare-earth cations stabilized by[Si]Beta zeolites in parallel with bulk rare-earth metal oxides.Good catalytic performance was achieved with all Lewis acidic rare-earth cations stabilized by zeolites and yttrium appeared to be the best metal choice.According to the results of several complementary techniques,i.e.,temperature-programmed surface reactions,in situ diffuse reflectance infrared Fourier transform spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,the reaction pathway and mechanism of the aldehyde self-aldol condensation over Y/Beta catalyst were studied in more detail.Density functional theory calculations revealed that aldol dehydration was the rate-limiting step.The hydroxyl group at the open yttrium site played an important role in stabilizing the transition state of the aldol dimer reducing the energy barrier for its hydration.Lewis acidic Y(OSi)(OH)2 stabilized by zeolites in open configurations were identified as the preferred active sites for the self-aldol condensation of aldehydes.