We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alka...We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into theα-Si3N4 lattice.Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment,while substitute Si under the nitrogen-rich environment,which provides a guide to synthesizingα-Si3N4 with different doping types by controlling nitrogen conditions.For electronic structures,energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band,which reduces the bandgap ofα-Si3N4.展开更多
The zircon ore deposit in metasediments and peralkaline granite of the Kyemyeongsan Formation is located in southwest of Chungju city, Korea. The deposit, closely associated with REE and Nb,is composed of metasomatic ...The zircon ore deposit in metasediments and peralkaline granite of the Kyemyeongsan Formation is located in southwest of Chungju city, Korea. The deposit, closely associated with REE and Nb,is composed of metasomatic alkaline rocks and rare metal alkali granite, and was formed in late Carboniferous (340~343Ma). Zircon occurs in different paragenetic sequence: (1) earlier rare metal alkali granite, (2) later metasomatic zircon ore. The metasomatic zone contains abundant microcline, albite and quartz with minor biotite, magnetite, hornblende, allanite and zircon. The alkali granites have high silica (72.13~74.52wt.% as SiO 2), and total iron content (5.95~6.89%), and are characterized by low Al 2O 3 content (7.12~9.74%). They also show variable K 2O content (3.60~6.98%), and high ratios of K 2O/Na 2O. The REE patterns of rare metal alkali granite are similar to those of felsic volcanics from rifts, or back arc basins in, or near continental crust. Zircon ores are characterized by high iron content and low Al 2O 3, SiO 2, and K 2O content and have unusually high total REE content (0.18~2.33%). REE patterns show relatively flat to somewhat heavy REE (HREE) depleted characteristics (Ce/Yb=0.39~5.17) with large Eu negative anomaly (Eu/Eu *=0.16~0.29). Laser ablation microprobe inductively coupled plasma mass spectrometer (LAM ICP MS) analyses has been carried on zircon. The REE patterns of mineral zircons are almost the same to those of zircon ores and rare metal alkali granites, which may reflect the inability of zircons to effectively fractionated REE at formation of origin. The Sm Nd isochron age of the zircon ore and rare metal alkali granite are 330Ma, and 331Ma, respectively with ε Nd(t) being range from -2.00 to -1.84. This data suggest that the ore forming material came from the mantle. Alkali granite has suffered extensive post magmatic metasomatism of a high temperature to produce zircon ores. Geochemical characteristics show that metasomatism of alkaline fluid was probably the dominant ore forming process in Chungju district.展开更多
In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them...In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them through acid leaching.In this study,a sequential alkaline-organic acid leaching was developed for the recovery of REEs from CFA.The effect of alkaline leaching using NaOH solution on the destructive ability of aluminosilicate glass,as well as the mineralogy and morphology changes of the resulting coal fly ash,was first studied.Furthermore,the effectiveness of alkaline leaching on the recovery ability of REEs through organic acid leaching was evaluated.The results show that the maximum leaching efficiency for Si and Al,which was obtained at the optimum alkaline leaching conditions,namely NaOH concentration of 10 mol/L,reaction temperature of 65℃,liquid/solid(L/S)ratio of 10 mL/g,and reaction time of 90 min,is 28%and 32%,respectively.The digestion reaction with NaOH lixiviants also causes coal fly ash to become more porous,making it advantageous in the organic acid-leaching process at the REEs recovery stage.The utilization of the desilicated residue produced from the digestion process in acid leaching effectively increases the overall REEs recovery from 32.2%to 77.6%.展开更多
基金Funded by National Key Research and Development Program of China(No.2017YFB0310400)the National Natural Science Foundation of China(Nos.51872217,51932006,51972246 and 51521001)+3 种基金Fundamental Research Funds for the Central Universities in ChinaState Key Laboratory of Advanced Electromagnetic Engineering and Technology(Huazhong University of Science and Technology),the Joint Fund(No.6141A02022255)the Major Program of the Specialized Technological Innovation of HuBei Province,China(No.2019AFA176)the“111”Project(No.B13035)。
文摘We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into theα-Si3N4 lattice.Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment,while substitute Si under the nitrogen-rich environment,which provides a guide to synthesizingα-Si3N4 with different doping types by controlling nitrogen conditions.For electronic structures,energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band,which reduces the bandgap ofα-Si3N4.
文摘The zircon ore deposit in metasediments and peralkaline granite of the Kyemyeongsan Formation is located in southwest of Chungju city, Korea. The deposit, closely associated with REE and Nb,is composed of metasomatic alkaline rocks and rare metal alkali granite, and was formed in late Carboniferous (340~343Ma). Zircon occurs in different paragenetic sequence: (1) earlier rare metal alkali granite, (2) later metasomatic zircon ore. The metasomatic zone contains abundant microcline, albite and quartz with minor biotite, magnetite, hornblende, allanite and zircon. The alkali granites have high silica (72.13~74.52wt.% as SiO 2), and total iron content (5.95~6.89%), and are characterized by low Al 2O 3 content (7.12~9.74%). They also show variable K 2O content (3.60~6.98%), and high ratios of K 2O/Na 2O. The REE patterns of rare metal alkali granite are similar to those of felsic volcanics from rifts, or back arc basins in, or near continental crust. Zircon ores are characterized by high iron content and low Al 2O 3, SiO 2, and K 2O content and have unusually high total REE content (0.18~2.33%). REE patterns show relatively flat to somewhat heavy REE (HREE) depleted characteristics (Ce/Yb=0.39~5.17) with large Eu negative anomaly (Eu/Eu *=0.16~0.29). Laser ablation microprobe inductively coupled plasma mass spectrometer (LAM ICP MS) analyses has been carried on zircon. The REE patterns of mineral zircons are almost the same to those of zircon ores and rare metal alkali granites, which may reflect the inability of zircons to effectively fractionated REE at formation of origin. The Sm Nd isochron age of the zircon ore and rare metal alkali granite are 330Ma, and 331Ma, respectively with ε Nd(t) being range from -2.00 to -1.84. This data suggest that the ore forming material came from the mantle. Alkali granite has suffered extensive post magmatic metasomatism of a high temperature to produce zircon ores. Geochemical characteristics show that metasomatism of alkaline fluid was probably the dominant ore forming process in Chungju district.
基金Project supported by the Ministry of Research,Technology and Higher Education,Republic of Indonesia(0386/E4/BP/2021)Universitas Gadjah Mada(1501407/UN1.FTK/SK/HK/2022)。
文摘In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them through acid leaching.In this study,a sequential alkaline-organic acid leaching was developed for the recovery of REEs from CFA.The effect of alkaline leaching using NaOH solution on the destructive ability of aluminosilicate glass,as well as the mineralogy and morphology changes of the resulting coal fly ash,was first studied.Furthermore,the effectiveness of alkaline leaching on the recovery ability of REEs through organic acid leaching was evaluated.The results show that the maximum leaching efficiency for Si and Al,which was obtained at the optimum alkaline leaching conditions,namely NaOH concentration of 10 mol/L,reaction temperature of 65℃,liquid/solid(L/S)ratio of 10 mL/g,and reaction time of 90 min,is 28%and 32%,respectively.The digestion reaction with NaOH lixiviants also causes coal fly ash to become more porous,making it advantageous in the organic acid-leaching process at the REEs recovery stage.The utilization of the desilicated residue produced from the digestion process in acid leaching effectively increases the overall REEs recovery from 32.2%to 77.6%.