The current state of lignin has been characterized by these three:(1)as one of the main components in lignocellulosic biomass with an abundant amount;(2)not be taken seriously but treated as a waste product;(3)underut...The current state of lignin has been characterized by these three:(1)as one of the main components in lignocellulosic biomass with an abundant amount;(2)not be taken seriously but treated as a waste product;(3)underutilized due to a complex and stubborn structure.However,lignin can be a rich source for hydrocarbons and aromatic compounds when gives appropriate utilization.In this work,we have studied the hydrotreatment of alkaline lignin(AL)under relatively mild conditions and further investigated the characterization of hydrogenated lignin(HL),especially the behavior during fast pyrolysis.The recovery of the HL decreased with increasing reaction temperature from 60 wt.%to 41 wt.%in the range of 150-250℃.The hydrotreated products were analyzed using Elemental Analysis,FTIR(for HL)and GC-MS(for bio-oil).The HL samples were found to have a higher hydrogen/carbon atomic effective ratio(H/C_(eff) ratio)and a higher degree of saturation than AL.Compared to the internal structure of the lignin before and after hydrotreatment,the side chain groups were removed from AL during the process.After that,from the fast pyrolysis of HL,it was observed that more light hydrocarbons and aromatic compounds were formed than that of AL.Furthermore,fast pyrolysis in the hydrogen atmosphere revealed that more volatile fractions were released compared to the Helium atmosphere.The total olefins yield was increased for HL compared AL from 1.02 wt.%to 3.1 wt.%at 250℃for 7 hours.This study of HL is instructive to some extent for the industrial utilization of lignin.展开更多
基金supported by Japan Science and Technology Agency Strategic International Collaborative Research Program(JST SICORP)Grant Number JPMJSC18H1,Japanthe financial support of the China Scholarships Council(Grant Numbers 201906730062).
文摘The current state of lignin has been characterized by these three:(1)as one of the main components in lignocellulosic biomass with an abundant amount;(2)not be taken seriously but treated as a waste product;(3)underutilized due to a complex and stubborn structure.However,lignin can be a rich source for hydrocarbons and aromatic compounds when gives appropriate utilization.In this work,we have studied the hydrotreatment of alkaline lignin(AL)under relatively mild conditions and further investigated the characterization of hydrogenated lignin(HL),especially the behavior during fast pyrolysis.The recovery of the HL decreased with increasing reaction temperature from 60 wt.%to 41 wt.%in the range of 150-250℃.The hydrotreated products were analyzed using Elemental Analysis,FTIR(for HL)and GC-MS(for bio-oil).The HL samples were found to have a higher hydrogen/carbon atomic effective ratio(H/C_(eff) ratio)and a higher degree of saturation than AL.Compared to the internal structure of the lignin before and after hydrotreatment,the side chain groups were removed from AL during the process.After that,from the fast pyrolysis of HL,it was observed that more light hydrocarbons and aromatic compounds were formed than that of AL.Furthermore,fast pyrolysis in the hydrogen atmosphere revealed that more volatile fractions were released compared to the Helium atmosphere.The total olefins yield was increased for HL compared AL from 1.02 wt.%to 3.1 wt.%at 250℃for 7 hours.This study of HL is instructive to some extent for the industrial utilization of lignin.