[Objective] The aim was to screen strains producing alkaline protease from soil and study the conditions for enzyme production.[Method] Eight strains producing alkaline protease were isolated from soil through plate i...[Objective] The aim was to screen strains producing alkaline protease from soil and study the conditions for enzyme production.[Method] Eight strains producing alkaline protease were isolated from soil through plate isolation,and the ability of enzyme production was measured by filter paper and Folin-phenol method.The strain with the strongest ability of enzyme production was screened as a candidate strain,then the factors influencing the ability of enzyme production was studied,finally the conditions for enzyme production was optimized through orthogonal test.[Result] No.5 strain was screened as a candidate strain due to its strong ability of enzyme production(6.00 U/ml),which accounted for 134.1% of that of Bacillus licheniformis,and it was gram-positive bacterium belonging to Clostridium.Orthogonal test showed that the optimal condition for producing protease was an environment with pH=11,0.3% of sucrose and 0.8% of peptone in the fermentation medium,and inoculation amount was 105 cfu/ml.In addition,peptone had significant impact on the level of enzyme production.[Conclusion] The study could provide theoretical references for the screening of strains producing alkaline protease.展开更多
[ Objective] The aim of the research was to select alkaline pmtease-producing strains and provide basis for the application in production. [ Method ] An alkaline protease-preducing strain was isolated from the sea wat...[ Objective] The aim of the research was to select alkaline pmtease-producing strains and provide basis for the application in production. [ Method ] An alkaline protease-preducing strain was isolated from the sea water and sea mud collected from Qingdao coastal area. After ultraviolet mutagenesis and microwave mutagenesis, a target strain ZR-58-3-1-3 was obtained. The protease activity and enzymatic properties of the strain were determined preliminarily. [ Result ] Prote- ase activity of the selected strain reached 145 U/ml. After the compound mutagenesis, protease activity of the fermentation liquid of strain ZR-58-3-1-3 reached 775 U/m|, which was about 4.3 times higher than that of the original strain. The optimal temperature for alkaline protease produced by strain ZR-58-3-1-3 was 45℃, and the optimal pH was 8.5, suggesting it belongs to moderate temperature protease with relatively high thermal stabihty. [ Conclusion] Strain ZR-58-3-1-3 has stable alkaline protease production performance and can be used as an alkaline protease-producing mutant strain.展开更多
A desulfurization strain that belongs to the thermophilic alkaline desulphuricant is designated as strain GDJ-3 and isolated from Inner Mongolia, China. The colony of the strain shows tiny, yellow, or white-yellow, an...A desulfurization strain that belongs to the thermophilic alkaline desulphuricant is designated as strain GDJ-3 and isolated from Inner Mongolia, China. The colony of the strain shows tiny, yellow, or white-yellow, and it becomes henna with the protracting of cultivated time. The cells are bacilliform (0.3?0.6 × 1.0?1.2 μm), motive, and Gram negative. The strain GDJ-3 is able to utilize respectively the thiosulphate, sulfate, sulfite, or sulfide as sulfur source, utilize the carbon dioxide as the carbon source, and utilize the ammonium or nitrate as the nitrogen source. According to GenBank data, 16s RNA results of GDJ-3 are in good agreement with Alpha proteobacterrium sp. (97%) and Ochrobactrum sp. (98%). For GDJ-3, the optimum growth temperature is at 45°C, the optimum pH is at 8.5–8.8, and the optimum rocking speed of sorting table is at 150 r/min. Under the optimum culture condition, the cells of the strain can live for about 18 h. In the desulfurization solution, which is prepared according to the composition of DDS solution, the objectionable constituents of sodium thiosulphate and sodium sulfide were added factitiously, and the bacterial cell concentration was set at 107/mL. After the regeneration of the above desulfurization solution by the strain cells, the concentration of sodium thiosulphate was decreased by 14.75 g/L (percentage loss of content 13.21%), the concentration of sodium sulfide was decreased by 0.76 g/L (percentage loss of content 87.36%) in the desulfurization solution in 9.5 hours, and sulfur appeared. Maybe, this kind of strain can be used as the regeneration’s bacterial source of DDS solution.展开更多
基金Supported by National Natural Science Foundation of China(31070361)Beijing Outstanding Teaching Team Project about Ecology in 2008+2 种基金The Fundamental Research Funds for the Central Universities (0910KYZY43)Undergraduate Research and Training Project of Minzu University of China (URTP201011115)Quality Course Project of Minzu University of China in 2011
文摘[Objective] The aim was to screen strains producing alkaline protease from soil and study the conditions for enzyme production.[Method] Eight strains producing alkaline protease were isolated from soil through plate isolation,and the ability of enzyme production was measured by filter paper and Folin-phenol method.The strain with the strongest ability of enzyme production was screened as a candidate strain,then the factors influencing the ability of enzyme production was studied,finally the conditions for enzyme production was optimized through orthogonal test.[Result] No.5 strain was screened as a candidate strain due to its strong ability of enzyme production(6.00 U/ml),which accounted for 134.1% of that of Bacillus licheniformis,and it was gram-positive bacterium belonging to Clostridium.Orthogonal test showed that the optimal condition for producing protease was an environment with pH=11,0.3% of sucrose and 0.8% of peptone in the fermentation medium,and inoculation amount was 105 cfu/ml.In addition,peptone had significant impact on the level of enzyme production.[Conclusion] The study could provide theoretical references for the screening of strains producing alkaline protease.
文摘[ Objective] The aim of the research was to select alkaline pmtease-producing strains and provide basis for the application in production. [ Method ] An alkaline protease-preducing strain was isolated from the sea water and sea mud collected from Qingdao coastal area. After ultraviolet mutagenesis and microwave mutagenesis, a target strain ZR-58-3-1-3 was obtained. The protease activity and enzymatic properties of the strain were determined preliminarily. [ Result ] Prote- ase activity of the selected strain reached 145 U/ml. After the compound mutagenesis, protease activity of the fermentation liquid of strain ZR-58-3-1-3 reached 775 U/m|, which was about 4.3 times higher than that of the original strain. The optimal temperature for alkaline protease produced by strain ZR-58-3-1-3 was 45℃, and the optimal pH was 8.5, suggesting it belongs to moderate temperature protease with relatively high thermal stabihty. [ Conclusion] Strain ZR-58-3-1-3 has stable alkaline protease production performance and can be used as an alkaline protease-producing mutant strain.
文摘A desulfurization strain that belongs to the thermophilic alkaline desulphuricant is designated as strain GDJ-3 and isolated from Inner Mongolia, China. The colony of the strain shows tiny, yellow, or white-yellow, and it becomes henna with the protracting of cultivated time. The cells are bacilliform (0.3?0.6 × 1.0?1.2 μm), motive, and Gram negative. The strain GDJ-3 is able to utilize respectively the thiosulphate, sulfate, sulfite, or sulfide as sulfur source, utilize the carbon dioxide as the carbon source, and utilize the ammonium or nitrate as the nitrogen source. According to GenBank data, 16s RNA results of GDJ-3 are in good agreement with Alpha proteobacterrium sp. (97%) and Ochrobactrum sp. (98%). For GDJ-3, the optimum growth temperature is at 45°C, the optimum pH is at 8.5–8.8, and the optimum rocking speed of sorting table is at 150 r/min. Under the optimum culture condition, the cells of the strain can live for about 18 h. In the desulfurization solution, which is prepared according to the composition of DDS solution, the objectionable constituents of sodium thiosulphate and sodium sulfide were added factitiously, and the bacterial cell concentration was set at 107/mL. After the regeneration of the above desulfurization solution by the strain cells, the concentration of sodium thiosulphate was decreased by 14.75 g/L (percentage loss of content 13.21%), the concentration of sodium sulfide was decreased by 0.76 g/L (percentage loss of content 87.36%) in the desulfurization solution in 9.5 hours, and sulfur appeared. Maybe, this kind of strain can be used as the regeneration’s bacterial source of DDS solution.