[Objective] This study aimed to investigate the effect of zearalenone (ZEN) on DNA damage of porcine leydig cells. [Method] Porcine leydig cells cultured in vitro were collected to determine the median lethal dose (LD...[Objective] This study aimed to investigate the effect of zearalenone (ZEN) on DNA damage of porcine leydig cells. [Method] Porcine leydig cells cultured in vitro were collected to determine the median lethal dose (LD50) of ZEN with tetrazolium-based colorimetric assay (MTT assay). Comet assay was carried out to detect the DNA damage of porcine leydig cells exposed to at 0 (negative group), 1, 5, 10, 20, 40 μmol/L of ZEN. [Result] The percentage of cell tail was 16.67%, 34.00%, 40.67%, 52.00% and 64.67% under 0, 1, 5, 10 and 20 μmol/L of ZEN, respectively; the differences between the percentages of cell tail in various experimental groups had extremely significant statistical significance compared with the negative group (P<0.01), showing a significant dose-effect relationship; Tail length in various groups was 57.60±4.78, 57.75±6.25, 78.97±5.83, 100.50±6.94 and 146.83±12.31 μm, respectively; Tail DNA % in various groups was 21.29±2.25%, 22.24±2.43%, 31.21±6.27%, 37.45±4.33% and 60.68±9.83%, respectively; Tail length and Tail DNA % in experimental groups with ZEN concentration above 5 μmol/L showed significant differences (P<0.05) compared with the negative group, which showed an upward trend with the increase of ZEN concentration. [Conclusion] ZEN has genotoxic effect on porcine leydig cells, which can cause DNA damage, with a significant dose-effect relationship.展开更多
[Objective] The like-rocket immunoelectrophoresis was used to explore a new feasible electrophoresis method for single cell gel electrophoresis assay (comet assay).[Method] The like-rocket immunoelectrophoresis was ...[Objective] The like-rocket immunoelectrophoresis was used to explore a new feasible electrophoresis method for single cell gel electrophoresis assay (comet assay).[Method] The like-rocket immunoelectrophoresis was used for single cell gel electrophoresis assay to detect DNA damage at single cell level,then it was compared with traditional electrophoresis method to analyze its advantage and disadvantages.[Result] Under cell DNA undamaged state,the results of two electrophoresis methods were consistent.When cell DNA was damaged,the comet tail divergence of some cells under traditional electrophoresis method were drifted,however,the comet tail image of like-rocket immunoelectrophoresis was concentrated and not shifted.[Conclusion] The like-rocket immunoelectrophoresis had some advantages.展开更多
[ Objective] This study aimed to evaluate the genotoxicity ofAbrus mollis Hance by using single cell gel electrophoresis. [Method] Forty mice were di- vided into five groups randomly, including positive control group ...[ Objective] This study aimed to evaluate the genotoxicity ofAbrus mollis Hance by using single cell gel electrophoresis. [Method] Forty mice were di- vided into five groups randomly, including positive control group ( cyclophosphamide group ), negative control group ( physiological saline group), high-dose A. moles Hance group (30 g/kg), moderate-dose A. mollis Hance group (20 g/kg) and low-dose A. mollis Hance group (10 g/kg). Tail DNA% and Tail Moment of mouse liver, kidney, lung and testicular cells were analyzed by using single cell gel electrophoresis assay, to investigate the effect of A. mollis Hance on DNA in mouse cells. [Result] Compared with positive control group, Tail DNA% and Tail Moment of moose liver, kidney, lung and testicular cells in A. moles Hance groups were significantly lower ( P 〈 0.01 ). Compared with negative control group, Tail DNA% and Tail Moment of mouse liver, kidney, lung and testicular ceils in high-dose A. mollis Hance group were significantly lower ( P 〈 0.01 ), while the other A. mollis Hance groups showed no statistically significant difference ( P 〉0.05 ). [ Conclusion] A. mollis Hance has no damage effect on DNA in mouse cells within this experimental dose range.展开更多
Objective To assess the effect of benzene on sperm DNA damage ;Methods Twenty-seven benzene-exposed workers were selected as exposed group and 35 normal sperm donors as control group. Air concentration of benzene seri...Objective To assess the effect of benzene on sperm DNA damage ;Methods Twenty-seven benzene-exposed workers were selected as exposed group and 35 normal sperm donors as control group. Air concentration of benzene series in workshop was determined by gas chromatography. As an internal exposure dose of benzene, the concentration of trans, trans-muconic acid (ttMA) was determined by high performance liquid chromatography. DNA was detected by modified single cell gel electrophoresis (SCGE). Results The air concentrations of benzene, toluene and xylene at the workplace were 86.49±2.83 mg/m^3, 97.20±3.52 mg/m^3 and 97.45± 2.10 mg/m^3, respectively. Urinary ttMA in exposed group (1.040 ± 0.617 mg/L) was significantly higher than that of control group (0.819 ± 0.157 mg/L). The percentage of head DNA, determined by modified SCGE method, significantly decreased in the exposed group (n=13, 70.18% ± 7.36%) compared with the control (n=16, 90.62% ± 2.94%)(P〈0.001). Conclusion The modified SCGE method can be used to investigate the damage of sperm DNA. As genotoxin and reprotoxins, benzene had direct effect on the germ cells during the spermatogenesiss.展开更多
In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet imag...In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet image analysis and processing techniques. The frequency of comet-like cells, the percentage of tail DNA, tail length, tail moment, Olive moment and tail area increased in tandem with increasing postmortem interval. In contrast, the head radius, the percentage of head DNA and head area showed a decreasing trend. Linear regression analysis revealed a high correlation between these parameters and the postmortem interval. The findings suggest that the single cell gel electrophoresis assay is a quick and sensitive method to detect DNA degradation in brain and dental pulp cells, providing an objective and accurate new way to estimate postmortem interval.展开更多
The nucleotide sequence deduced from the amino acid sequence of the scorpion insectotoxin AaIT was chemically synthesized and was expressed in Escherichia coli. The authenticity of this in vitro expressed peptide was ...The nucleotide sequence deduced from the amino acid sequence of the scorpion insectotoxin AaIT was chemically synthesized and was expressed in Escherichia coli. The authenticity of this in vitro expressed peptide was confirmed by N-terminal peptide sequencing. Two groups of bioassays, artificial diet incorporation assay and contact insecticidal effect assay, were carried out separately to verify the toxicity of this recombinant toxin. At the end of a 24 h experimental period, more than 60% of the testing diamondback moth (Plutella xylostella) larvae were killed in both groups with LC50 value of 18.4 microM and 0.70 microM respectively. Cytotoxicity assay using cultured Sf9 insect cells and MCF-7 human cells demonstrated that the toxin AaIT had specific toxicity against insect cells but not human cells. Only 0.13 microM recombinant toxin was needed to kill 50% of cultured insect cells while as much as 1.3 microM toxin had absolutely no effect on human cells. Insect cells produced obvious intrusions from their plasma membrane before broken up. We infer that toxin AaIT bind to a putative sodium channel in these insect cells and open the channel persistently, which would result in Na+ influx and finally cause destruction of insect cells.展开更多
Objective: To evaluate retrospectively the effect of general anesthesia on DNA damage in the blood mononuclear cells (PBMCs) of surgical patients in order to provide evidence for a better nursing care during the proce...Objective: To evaluate retrospectively the effect of general anesthesia on DNA damage in the blood mononuclear cells (PBMCs) of surgical patients in order to provide evidence for a better nursing care during the procedure. Methods: Clinical charts of 76 patients who underwent operation under general anesthesia and 76 healthy control subjects with documented results of DNA damage extent in PBMCs from the single-cell gel electrophoresis (SCGE) or comet assay and serum contents of superoxide dismutase (SOD) and malondialdehyde (MDA) from biochemical analyses were reviewed. The percentage of comet PBMCs and tail DNA and serum contents of SOD and MAD were analyzed by student t-test. Results: Compared with healthy control subjects, generally anesthetized surgical patients had significantly higher % comet PBMCs and % tail DNA (P < 0.05) and significantly lower serum concentrations of SOD (P < 0.05) and significantly higher serum concentrations of MAD (P < 0.05). Compared with levels before general anesthesia in surgical patients, % comet PBMCs, % tail DNA, and serum levels of MAD were significantly higher (P < 0.05 or 0.01), and serum levels of SOD were significantly lower (P < 0.05), after general anesthesia. Conclusions: General anesthesia during surgery causes a certain degree of hypoxia and PBMC damage. Particular attention should be paid to monitoring and maintenance of blood oxygen saturation in patients undergoing surgery under general anesthesia.展开更多
文摘[Objective] This study aimed to investigate the effect of zearalenone (ZEN) on DNA damage of porcine leydig cells. [Method] Porcine leydig cells cultured in vitro were collected to determine the median lethal dose (LD50) of ZEN with tetrazolium-based colorimetric assay (MTT assay). Comet assay was carried out to detect the DNA damage of porcine leydig cells exposed to at 0 (negative group), 1, 5, 10, 20, 40 μmol/L of ZEN. [Result] The percentage of cell tail was 16.67%, 34.00%, 40.67%, 52.00% and 64.67% under 0, 1, 5, 10 and 20 μmol/L of ZEN, respectively; the differences between the percentages of cell tail in various experimental groups had extremely significant statistical significance compared with the negative group (P<0.01), showing a significant dose-effect relationship; Tail length in various groups was 57.60±4.78, 57.75±6.25, 78.97±5.83, 100.50±6.94 and 146.83±12.31 μm, respectively; Tail DNA % in various groups was 21.29±2.25%, 22.24±2.43%, 31.21±6.27%, 37.45±4.33% and 60.68±9.83%, respectively; Tail length and Tail DNA % in experimental groups with ZEN concentration above 5 μmol/L showed significant differences (P<0.05) compared with the negative group, which showed an upward trend with the increase of ZEN concentration. [Conclusion] ZEN has genotoxic effect on porcine leydig cells, which can cause DNA damage, with a significant dose-effect relationship.
基金Supported by Natural Science Foundation of Hebei Province(C2008000591)~~
文摘[Objective] The like-rocket immunoelectrophoresis was used to explore a new feasible electrophoresis method for single cell gel electrophoresis assay (comet assay).[Method] The like-rocket immunoelectrophoresis was used for single cell gel electrophoresis assay to detect DNA damage at single cell level,then it was compared with traditional electrophoresis method to analyze its advantage and disadvantages.[Result] Under cell DNA undamaged state,the results of two electrophoresis methods were consistent.When cell DNA was damaged,the comet tail divergence of some cells under traditional electrophoresis method were drifted,however,the comet tail image of like-rocket immunoelectrophoresis was concentrated and not shifted.[Conclusion] The like-rocket immunoelectrophoresis had some advantages.
基金Supported by Scientific Research Project from Guangxi Department of Education(200710MS052)Project from Technology Bureau of Yulin City(0881038)
文摘[ Objective] This study aimed to evaluate the genotoxicity ofAbrus mollis Hance by using single cell gel electrophoresis. [Method] Forty mice were di- vided into five groups randomly, including positive control group ( cyclophosphamide group ), negative control group ( physiological saline group), high-dose A. moles Hance group (30 g/kg), moderate-dose A. mollis Hance group (20 g/kg) and low-dose A. mollis Hance group (10 g/kg). Tail DNA% and Tail Moment of mouse liver, kidney, lung and testicular cells were analyzed by using single cell gel electrophoresis assay, to investigate the effect of A. mollis Hance on DNA in mouse cells. [Result] Compared with positive control group, Tail DNA% and Tail Moment of moose liver, kidney, lung and testicular cells in A. moles Hance groups were significantly lower ( P 〈 0.01 ). Compared with negative control group, Tail DNA% and Tail Moment of mouse liver, kidney, lung and testicular ceils in high-dose A. mollis Hance group were significantly lower ( P 〈 0.01 ), while the other A. mollis Hance groups showed no statistically significant difference ( P 〉0.05 ). [ Conclusion] A. mollis Hance has no damage effect on DNA in mouse cells within this experimental dose range.
文摘Objective To assess the effect of benzene on sperm DNA damage ;Methods Twenty-seven benzene-exposed workers were selected as exposed group and 35 normal sperm donors as control group. Air concentration of benzene series in workshop was determined by gas chromatography. As an internal exposure dose of benzene, the concentration of trans, trans-muconic acid (ttMA) was determined by high performance liquid chromatography. DNA was detected by modified single cell gel electrophoresis (SCGE). Results The air concentrations of benzene, toluene and xylene at the workplace were 86.49±2.83 mg/m^3, 97.20±3.52 mg/m^3 and 97.45± 2.10 mg/m^3, respectively. Urinary ttMA in exposed group (1.040 ± 0.617 mg/L) was significantly higher than that of control group (0.819 ± 0.157 mg/L). The percentage of head DNA, determined by modified SCGE method, significantly decreased in the exposed group (n=13, 70.18% ± 7.36%) compared with the control (n=16, 90.62% ± 2.94%)(P〈0.001). Conclusion The modified SCGE method can be used to investigate the damage of sperm DNA. As genotoxin and reprotoxins, benzene had direct effect on the germ cells during the spermatogenesiss.
基金supported by Key Research Plan of the Ministry of Public Security of China, No. 2011ZDYJXJXY005Scientific Research Foundation of the Higher Education Institutions of Liaoning Province, China, No. 2008Z205
文摘In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet image analysis and processing techniques. The frequency of comet-like cells, the percentage of tail DNA, tail length, tail moment, Olive moment and tail area increased in tandem with increasing postmortem interval. In contrast, the head radius, the percentage of head DNA and head area showed a decreasing trend. Linear regression analysis revealed a high correlation between these parameters and the postmortem interval. The findings suggest that the single cell gel electrophoresis assay is a quick and sensitive method to detect DNA degradation in brain and dental pulp cells, providing an objective and accurate new way to estimate postmortem interval.
基金This work was supported by a grant from 863High Technology Program,Chinese Ministry of Sci-ence and Technology
文摘The nucleotide sequence deduced from the amino acid sequence of the scorpion insectotoxin AaIT was chemically synthesized and was expressed in Escherichia coli. The authenticity of this in vitro expressed peptide was confirmed by N-terminal peptide sequencing. Two groups of bioassays, artificial diet incorporation assay and contact insecticidal effect assay, were carried out separately to verify the toxicity of this recombinant toxin. At the end of a 24 h experimental period, more than 60% of the testing diamondback moth (Plutella xylostella) larvae were killed in both groups with LC50 value of 18.4 microM and 0.70 microM respectively. Cytotoxicity assay using cultured Sf9 insect cells and MCF-7 human cells demonstrated that the toxin AaIT had specific toxicity against insect cells but not human cells. Only 0.13 microM recombinant toxin was needed to kill 50% of cultured insect cells while as much as 1.3 microM toxin had absolutely no effect on human cells. Insect cells produced obvious intrusions from their plasma membrane before broken up. We infer that toxin AaIT bind to a putative sodium channel in these insect cells and open the channel persistently, which would result in Na+ influx and finally cause destruction of insect cells.
文摘Objective: To evaluate retrospectively the effect of general anesthesia on DNA damage in the blood mononuclear cells (PBMCs) of surgical patients in order to provide evidence for a better nursing care during the procedure. Methods: Clinical charts of 76 patients who underwent operation under general anesthesia and 76 healthy control subjects with documented results of DNA damage extent in PBMCs from the single-cell gel electrophoresis (SCGE) or comet assay and serum contents of superoxide dismutase (SOD) and malondialdehyde (MDA) from biochemical analyses were reviewed. The percentage of comet PBMCs and tail DNA and serum contents of SOD and MAD were analyzed by student t-test. Results: Compared with healthy control subjects, generally anesthetized surgical patients had significantly higher % comet PBMCs and % tail DNA (P < 0.05) and significantly lower serum concentrations of SOD (P < 0.05) and significantly higher serum concentrations of MAD (P < 0.05). Compared with levels before general anesthesia in surgical patients, % comet PBMCs, % tail DNA, and serum levels of MAD were significantly higher (P < 0.05 or 0.01), and serum levels of SOD were significantly lower (P < 0.05), after general anesthesia. Conclusions: General anesthesia during surgery causes a certain degree of hypoxia and PBMC damage. Particular attention should be paid to monitoring and maintenance of blood oxygen saturation in patients undergoing surgery under general anesthesia.