Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to...Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to determine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge(Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Csand retention time t are two other important factors to consider. The validity of these arguments is confirmed with modeling and experiments. The individual effect of Ra/s, Csand t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7% was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3% was achieved while the energy consumption of microwave was much lower than previously reported.展开更多
Waste management of rare earth metals(REMs) containing materials and recycling of rare earth metals(REM) from waste materials are becoming more and more important due to high demand and resource exhaustion. Howeve...Waste management of rare earth metals(REMs) containing materials and recycling of rare earth metals(REM) from waste materials are becoming more and more important due to high demand and resource exhaustion. However, extraction of REM from waste fluorescent powder materials is difficult because of their special aluminate structure. A novel "alkaline roasting-acid leaching" process was developed in this study. The alkaline roasting process mechanism was examined using differential thermal analysis(DTA)-thermogravimetric(TG) measurements, and the roasting product was characterized by XRD analysis. In this process, Al_2O_3 was converted into water soluble NaAlO_2 via alkaline roasting, and NaAlO_ 2 in the roasting product could be easily dissolved in water, while the rare earth oxide(REOs) remained as solid. After filtration, REOs cake was leached using hydrochloric acid to achieve 99.8% of REM recovery. It was concluded that the alkaline roasting-acid leaching process could effectively separate Al_2O_3 and REOs with high REM recovery.展开更多
Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to deligni...Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to delignify disposable wooden chopsticks (DWC) waste, were investigated. The effects of NaOH concentration, temperature and retention time were examined and it was found that retention time had no effect on lignin removal or carbohydrate released in enzymatic hydrolysate. The highest percentage of lignin removal (41%) was obtained with 2% NaOH at 100℃, correlated with the highest carbohydrate released (67 mg/gpretreated DWC) in the hydrolysate. An enriched culture from a hot spring was used as inoculum for fermentative H2 production, and its optimum initial pH and temperature were determined to be 7.0 and 50℃, respectively. Furthermore, enzymatic hydrolysate from pretreated DWC was successfully demonstrated as a substrate for fermentative H2 production by the enriched culture. The maximum H2 yield and production rate were achieved at 195 mL H2/g total sugarsconsumed and 1 16 mL Hz/(L.day), respectively.展开更多
基金the National Natural Science Foundation of China(51078234)Shenzhen R&D fund(JCYJ20140418193546101)Shenzhen University R&D fund(T201203)
文摘Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to determine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge(Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Csand retention time t are two other important factors to consider. The validity of these arguments is confirmed with modeling and experiments. The individual effect of Ra/s, Csand t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7% was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3% was achieved while the energy consumption of microwave was much lower than previously reported.
基金Supported by National Natural Science Foundation of China(51464012)Natural Science Foundation of Jiangxi(20114 bab206031)the Natural Science Foundation of Jiangxi University of Science and Technology(NSFJ2015-G09)
文摘Waste management of rare earth metals(REMs) containing materials and recycling of rare earth metals(REM) from waste materials are becoming more and more important due to high demand and resource exhaustion. However, extraction of REM from waste fluorescent powder materials is difficult because of their special aluminate structure. A novel "alkaline roasting-acid leaching" process was developed in this study. The alkaline roasting process mechanism was examined using differential thermal analysis(DTA)-thermogravimetric(TG) measurements, and the roasting product was characterized by XRD analysis. In this process, Al_2O_3 was converted into water soluble NaAlO_2 via alkaline roasting, and NaAlO_ 2 in the roasting product could be easily dissolved in water, while the rare earth oxide(REOs) remained as solid. After filtration, REOs cake was leached using hydrochloric acid to achieve 99.8% of REM recovery. It was concluded that the alkaline roasting-acid leaching process could effectively separate Al_2O_3 and REOs with high REM recovery.
基金supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) (Monbukagakusho Scholarship)MEXT-ARDA under the Asia Core Program (ACP)
文摘Hydrogen (H2) production from lignocellulosic materials may be enhanced by removing lignin and increasing the porosity of the material prior to enzymatic hydrolysis. Alkaline pretreatment conditions, used to delignify disposable wooden chopsticks (DWC) waste, were investigated. The effects of NaOH concentration, temperature and retention time were examined and it was found that retention time had no effect on lignin removal or carbohydrate released in enzymatic hydrolysate. The highest percentage of lignin removal (41%) was obtained with 2% NaOH at 100℃, correlated with the highest carbohydrate released (67 mg/gpretreated DWC) in the hydrolysate. An enriched culture from a hot spring was used as inoculum for fermentative H2 production, and its optimum initial pH and temperature were determined to be 7.0 and 50℃, respectively. Furthermore, enzymatic hydrolysate from pretreated DWC was successfully demonstrated as a substrate for fermentative H2 production by the enriched culture. The maximum H2 yield and production rate were achieved at 195 mL H2/g total sugarsconsumed and 1 16 mL Hz/(L.day), respectively.