The effects of additives on the surface and cross-sectional morphologies of zinc deposits on iron substrate from alkalinezincate solution were characterized by scanning electron microscope(SEM).The cathodic reaction m...The effects of additives on the surface and cross-sectional morphologies of zinc deposits on iron substrate from alkalinezincate solution were characterized by scanning electron microscope(SEM).The cathodic reaction mechanisms under variousconcentrations of additives were investigated using cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)techniques.It is found that with increasing the additive A content in the bath solution,the nucleation overpotential(NOP)value isobviously increased and the inhibition effect is strengthened.This may be mainly due to the adsorption of additive A on the cathodicelectrode surface,which can cover the active sites and block the discharge reduction.The results of EIS analysis indicate that therate-determining step of zinc electrodeposition process is changed from mixed control step into electrochemical reduction step in thepresence of additive A.However,any quantity of additive B has little effect on the NOP value and the inhibition effect is not obvious.Furthermore,addition of additive A and additive B at the same time displays the strongest inhibition effect and shows a strongsynergism because of their co-adsorption on the cathodic electrode surface.展开更多
基金Project(2014CB643401)supported by the National Basic Research Program of ChinaProjects(51134007,51404299)supported by the National Natural Science Foundation of China
文摘The effects of additives on the surface and cross-sectional morphologies of zinc deposits on iron substrate from alkalinezincate solution were characterized by scanning electron microscope(SEM).The cathodic reaction mechanisms under variousconcentrations of additives were investigated using cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)techniques.It is found that with increasing the additive A content in the bath solution,the nucleation overpotential(NOP)value isobviously increased and the inhibition effect is strengthened.This may be mainly due to the adsorption of additive A on the cathodicelectrode surface,which can cover the active sites and block the discharge reduction.The results of EIS analysis indicate that therate-determining step of zinc electrodeposition process is changed from mixed control step into electrochemical reduction step in thepresence of additive A.However,any quantity of additive B has little effect on the NOP value and the inhibition effect is not obvious.Furthermore,addition of additive A and additive B at the same time displays the strongest inhibition effect and shows a strongsynergism because of their co-adsorption on the cathodic electrode surface.