Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t...Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.展开更多
Recently abiogenic alkanes have been found in various locations in the world and other celestial bodies. The chemical composition of abiogenic alkane gases varies widely. The content of methane is low and nearly no C2...Recently abiogenic alkanes have been found in various locations in the world and other celestial bodies. The chemical composition of abiogenic alkane gases varies widely. The content of methane is low and nearly no C2+ is found in the abiogenic alkane gases from fluid inclusions in volcanic rocks or hot springs in China. In the unsedimented submarine hydrothermal vent system C1/C2+ ratios are much greater than those for the thermogenic gases, mostly >800 and in some cases up to 8,000. In the Songliao Basin, China, C1/C2+ of some abiogenic gases are often less than 150. Abiogenic alkane gases which have been found in nature often have carbon isotopic reversal among C1–C4 alkanes (δ13C1>δ13C2>δ13C3>δ13C4), whereas both regular and reversed hydrogen isotope distribution pattern among C1–C4 alkanes have been reported. The δ13C of abiogenic methane is mainly greater than ?30‰ though laboratory synthesized methane can have δ13C as low as ?57‰, and its δD1 values vary widely and overlap with biogenic gases. High 3He/4He ratios often indicate the addition of mantle-derived helium and are related to abiogenic gases. However, some biogenic gases can also have high 3He/4He ratios up to 8. The CH4/3He end-member is often lower than 106 for abiogenic alkane gases while greater than 1013 for biogenic gases, and the values between these two end-members often reflect the mixing of biogenic and abiogenic gases.展开更多
The Juhugeng Sag,located in northwest of the Muli Basin,Tibetan Plateau,has been investigated for coal and petroleum resources during the past several decades.There have been successful recoveries of gas hydrates duri...The Juhugeng Sag,located in northwest of the Muli Basin,Tibetan Plateau,has been investigated for coal and petroleum resources during the past several decades.There have been successful recoveries of gas hydrates during recent years from the Middle Jurassic Yaojie Formation that offer insight into the origin of the hydrocarbon gases from the complex sag feature.This study examines the organic geochemical and stable carbon isotopic characteristics of shale and coal samples from the Middle Jurassic Yaojie Formation of the Juhugeng Sag,as well as compares with carbon isotopes,gas amounts and components of hydrate-bound gas.A total of 19 samples from surface mining,including 12 samples of black shale and 7 samples of coal,were analysed using a micro-photometer,a gas chromatograph,Rock–Eval and isotope methods.All the shale samples contained 100%type I kerogen,and the random vitrinite reflectance values vary from 0.65%to 1.32%and achieve thermal pyrolysis phase.Isotope values of methane(δ13C ranging from−52.6‰to−39.5‰andδD ranging from−285‰to−227‰)in the hydrate bound gases suggest that the methane originates mainly from thermogenic contributions.It is proposed that ethane from the gas hydrate is thermogenic-produced,and this conjecture is supported by the fact that most of the gas hydrate also contains more than 30%of thermogenic C2+hydrocarbons and is similar to structure II hydrate.Carbon isotope data from the gas hydrates show a positive carbon isotope series(δ13C1<δ13C2<δ13C3),with ethaneδ13C values being lighter than−28.5‰,as high consistency with source rocks from the Jurassic period indicate thermal oil-prone gas.A model of the accumulation of gas hydrate is plotted.However,the gaseous sources of gas hydrates may be a subject for more research.展开更多
The Qilian permafrost of the South Qilian Basin(SQB)has become a research focus since gas hydrates were discovered in 2009.Although many works from different perspectives have been conducted in this area,the origin of...The Qilian permafrost of the South Qilian Basin(SQB)has become a research focus since gas hydrates were discovered in 2009.Although many works from different perspectives have been conducted in this area,the origin of gas from gas hydrate is still controversial.Molecular composition and carbon isotope of 190 samples related to gas hydrates collected from 11 boreholes allowed exploration of genetic type,thermal maturity,biodegradation,as well as gas-source correlation of alkane gases from gas hydrates and free gases.Results indicate that alkane gases biodegraded after the formation of natural gas.According to differences in carbon isotopes of methane and their congeners(CH4,C2H6,C3H8),the thermal maturity(vitrinite reflectance,VRo)of most alkane gases ranges from 0.6%to 1.5%,indicating a mature to high mature stage.The thermal maturity VRo of a small part of alkane gas(in boreholes DK5 and DK6)is higher than 1.3%,indicating a high mature stage.Alkane gases were mainly produced by secondary cracking,consisting of crude oilcracking gases and wet gases cracking to dry gases.Genetic types of alkane gases are primarily oil-type gases generated from shales and mudstones in the upper Yaojie Formation of Jurassic,with less coal-type gases originated from the mudstones in the Triassic Galedesi Formation and the lower Yaojie Formation of Jurassic.Carbon dioxides associated with alkanes from gas hydrates and free gases indicate the thermal decomposition and biodegradation of organic matter.The origins of natural gases from gas hydrates and free gases shed light on the evaluation of petroleum resource potential,deeply buried sediments,and petroleum resource exploration in the SQB.展开更多
基金Supported by the National Natural Science Foundation of China(41472120)General Project of National Natural Science Foundation of China(42272188)+1 种基金Special Fund of PetroChina and New Energy Branch(2023YQX10101)Petrochemical Joint Fund of Fund Committee(U20B6001)。
文摘Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.
基金supported by the China Postdoctoral Science Foundation (20070420393)China Postdoctoral Special Science Foundation (20081095)PetroChina Science and Technology Project (07-01C-01-07)
文摘Recently abiogenic alkanes have been found in various locations in the world and other celestial bodies. The chemical composition of abiogenic alkane gases varies widely. The content of methane is low and nearly no C2+ is found in the abiogenic alkane gases from fluid inclusions in volcanic rocks or hot springs in China. In the unsedimented submarine hydrothermal vent system C1/C2+ ratios are much greater than those for the thermogenic gases, mostly >800 and in some cases up to 8,000. In the Songliao Basin, China, C1/C2+ of some abiogenic gases are often less than 150. Abiogenic alkane gases which have been found in nature often have carbon isotopic reversal among C1–C4 alkanes (δ13C1>δ13C2>δ13C3>δ13C4), whereas both regular and reversed hydrogen isotope distribution pattern among C1–C4 alkanes have been reported. The δ13C of abiogenic methane is mainly greater than ?30‰ though laboratory synthesized methane can have δ13C as low as ?57‰, and its δD1 values vary widely and overlap with biogenic gases. High 3He/4He ratios often indicate the addition of mantle-derived helium and are related to abiogenic gases. However, some biogenic gases can also have high 3He/4He ratios up to 8. The CH4/3He end-member is often lower than 106 for abiogenic alkane gases while greater than 1013 for biogenic gases, and the values between these two end-members often reflect the mixing of biogenic and abiogenic gases.
基金This study was supported by the National Natural Science Fundamental of China(No.41702144)the Fundamental Research Funds for the Central Universities(No.2652018234)+1 种基金the Key Program of exploration Foundation of Qinghai province(No.2017042007ky007)The authors wish to thank Prof.Yuzhuang Sun for his comments and suggestions to improve the manuscripts.
文摘The Juhugeng Sag,located in northwest of the Muli Basin,Tibetan Plateau,has been investigated for coal and petroleum resources during the past several decades.There have been successful recoveries of gas hydrates during recent years from the Middle Jurassic Yaojie Formation that offer insight into the origin of the hydrocarbon gases from the complex sag feature.This study examines the organic geochemical and stable carbon isotopic characteristics of shale and coal samples from the Middle Jurassic Yaojie Formation of the Juhugeng Sag,as well as compares with carbon isotopes,gas amounts and components of hydrate-bound gas.A total of 19 samples from surface mining,including 12 samples of black shale and 7 samples of coal,were analysed using a micro-photometer,a gas chromatograph,Rock–Eval and isotope methods.All the shale samples contained 100%type I kerogen,and the random vitrinite reflectance values vary from 0.65%to 1.32%and achieve thermal pyrolysis phase.Isotope values of methane(δ13C ranging from−52.6‰to−39.5‰andδD ranging from−285‰to−227‰)in the hydrate bound gases suggest that the methane originates mainly from thermogenic contributions.It is proposed that ethane from the gas hydrate is thermogenic-produced,and this conjecture is supported by the fact that most of the gas hydrate also contains more than 30%of thermogenic C2+hydrocarbons and is similar to structure II hydrate.Carbon isotope data from the gas hydrates show a positive carbon isotope series(δ13C1<δ13C2<δ13C3),with ethaneδ13C values being lighter than−28.5‰,as high consistency with source rocks from the Jurassic period indicate thermal oil-prone gas.A model of the accumulation of gas hydrate is plotted.However,the gaseous sources of gas hydrates may be a subject for more research.
基金granted by the National Natural Science Foundation of China(Grant nos.4170214441802212)+1 种基金the State Key Laboratory of Organic Geochemistry,GIGCAS(Grant no.SKLOG-201908)the Fundamental Research Funds for the Central Universities(Grant no.2652018234)。
文摘The Qilian permafrost of the South Qilian Basin(SQB)has become a research focus since gas hydrates were discovered in 2009.Although many works from different perspectives have been conducted in this area,the origin of gas from gas hydrate is still controversial.Molecular composition and carbon isotope of 190 samples related to gas hydrates collected from 11 boreholes allowed exploration of genetic type,thermal maturity,biodegradation,as well as gas-source correlation of alkane gases from gas hydrates and free gases.Results indicate that alkane gases biodegraded after the formation of natural gas.According to differences in carbon isotopes of methane and their congeners(CH4,C2H6,C3H8),the thermal maturity(vitrinite reflectance,VRo)of most alkane gases ranges from 0.6%to 1.5%,indicating a mature to high mature stage.The thermal maturity VRo of a small part of alkane gas(in boreholes DK5 and DK6)is higher than 1.3%,indicating a high mature stage.Alkane gases were mainly produced by secondary cracking,consisting of crude oilcracking gases and wet gases cracking to dry gases.Genetic types of alkane gases are primarily oil-type gases generated from shales and mudstones in the upper Yaojie Formation of Jurassic,with less coal-type gases originated from the mudstones in the Triassic Galedesi Formation and the lower Yaojie Formation of Jurassic.Carbon dioxides associated with alkanes from gas hydrates and free gases indicate the thermal decomposition and biodegradation of organic matter.The origins of natural gases from gas hydrates and free gases shed light on the evaluation of petroleum resource potential,deeply buried sediments,and petroleum resource exploration in the SQB.