Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to f...Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to fi'om water and the other oxygen atom is to from aldehydes/ketones. The oxidized flavin is regenerated after water is formed. The chemical biomimetic system was established according to the preliminary mechanism of alkanesulfonate monooxygenase and the cyclic mechanism was proposed for the formation ofaldehydes/ketones. Two oxygen atoms from the reduced flavin to form C(4a)-peroxy-flavin. The oxygen atom connected with C(4a) abstracts one electron from the neighbouring oxygen to transfer one oxygen atom to C1 ofalkanesulfonates and abstracts one hydrogen from C1 ofalkanesulfonates to break C 1-H bond. Hydroxy-flavin was produced by the above cyclic mechanism. Alkansulfonate monooxygenase SsuD does not directly involve in the reaction. It only supplies some comfortable environment to facilitate the target reactiorL展开更多
文摘Atkanesulfonate monooxygenase SsuD facilitates the desulfonation reaction of alkane sulfonates to release sulfite and corresponding aldehydes/ketones. Oxygen is activated by the reduced flavin. One oxygen atom is to fi'om water and the other oxygen atom is to from aldehydes/ketones. The oxidized flavin is regenerated after water is formed. The chemical biomimetic system was established according to the preliminary mechanism of alkanesulfonate monooxygenase and the cyclic mechanism was proposed for the formation ofaldehydes/ketones. Two oxygen atoms from the reduced flavin to form C(4a)-peroxy-flavin. The oxygen atom connected with C(4a) abstracts one electron from the neighbouring oxygen to transfer one oxygen atom to C1 ofalkanesulfonates and abstracts one hydrogen from C1 ofalkanesulfonates to break C 1-H bond. Hydroxy-flavin was produced by the above cyclic mechanism. Alkansulfonate monooxygenase SsuD does not directly involve in the reaction. It only supplies some comfortable environment to facilitate the target reactiorL