The acidic properties of aluminum phosphate (A1PO4-5) solid acid catalyst were characterized by tem- perature programmed desorption (TPD) of ammonia (NH3), n-propylamine (n-C3HTNH2), iso-propylamine [(CH3)2C...The acidic properties of aluminum phosphate (A1PO4-5) solid acid catalyst were characterized by tem- perature programmed desorption (TPD) of ammonia (NH3), n-propylamine (n-C3HTNH2), iso-propylamine [(CH3)2CHNH2] and n-dipropylamine [(C3H7)2NH] separately, and its catalytic performance in benzene alkylation with long chain olefin was studied in a fixed-bed reactor. The characterized acid amount of catalyst increased with the basicity of adsorbates. With increase of the activation temperature of catalyst, the acid amount characterized by NHa-TPD decreased, however, it increased when characterized by TPD using three other adsorbates. The desorption kinetics of TPD process and the deactivation kinetics of catalyst were investigated. The acidity and catalytic per- formance of catalyst was also correlated. The results showed that the acid amount and strength are well correlated with the activity and stability using NH3 as adsorbate, respectively, which indicated NH3 was a better basic adsorbate. It was also found that the catalyst with higher acid amount and lower acid strength on the surface exhibited the better catalytic performance and stability.展开更多
A series of activated carbons from Taixi anthracite were prepared by steam activation in the presence of KOH and then they were modified by different methods. The regulation of porosity and the modification of surface...A series of activated carbons from Taixi anthracite were prepared by steam activation in the presence of KOH and then they were modified by different methods. The regulation of porosity and the modification of surface chemistry were carried out with the aim to improve the benzene adsorption capacity of activated carbon. The influences of KOH and activation process parameters including activation temperature, activation time and steam flow rate on porosity of activated carbon were evaluated, and the effect of modification methods on surface chemistry was investigated. Also, the relationship between benzene adsorption capacity and porosity and surface chemistry was analyzed. Results show that activation temperature is the dominant factor in the activation process; the introduction of KOH into the raw material can enhance the reactivity of char in activation process, meanwhile it shows a negative effect on the porosity development, especially on the mesopore development. Results of FTIR analysis indicate that anthracite-based activated carbon with condensed aromatics and chemically inert oxygen does not present the nature to be surface modified. Besides, benzene adsorption capacity has an approximate linear relationship with surface area and in our preparation, benzene adsorption capacity and surface area of activated carbon are up to 1210 m 2 /g and 423 mg/g, respectively.展开更多
Acorus tatarinowii Schott is a traditional Chinese medicine plant and has multiple bioactivities in medicine and pesticide field. In this study, the antifungal compound 1,2-dimethoxy-4(2-propenyl) benzene was isolat...Acorus tatarinowii Schott is a traditional Chinese medicine plant and has multiple bioactivities in medicine and pesticide field. In this study, the antifungal compound 1,2-dimethoxy-4(2-propenyl) benzene was isolated from A. tatarinowii Schott by activity-directed isolation method, and the inhibitory activity of the extract and 1,2-dimethoxy-4(2-propenyl) benzene against seven plant pathogenic fungi was evaluated. The results showed that the extract and 1,2-dimethoxy-4(2- propenyl) benzene had high inhibitory activity against hyphal growth of Thielaviopsis paradoxa (de Seynes) V. Hohnel, Pestalotia mangiferae P. Henn., Fusarium oxysporum f. sp. niveum (E. F. Smith) Syn. et Hans., Alternaria alternate Tanaka, Colletotrichum musae (Berk et Curt) V. Arx, Sphaceloma fawcettii Jenk., and Mycosphaerella sentina (Fr.) Schroter. The EC50 values of extract were 1.6162, 1.6811, 1.1253, 3.5771, 1.7024, 2.2284, and 2.2221 g L^-1, respectively, and the EC50 values of 1,2-dimethoxy-4(2-propenyl) benzene were 0.1021, 0.0997, 0.0805, 0.1742, 0.1503, 0.1853, and 0.1924 g L^-1, respectively. 1,2-Dimethoxy-4(2-propenyl) benzene also inhibited spores germination of T. paradoxa (de Seynes) V. Hohnel and F. oxysporum f. sp. niveum (E. F. Smith) Syn. et Hans., with the inhibitory rates of 98.81 and 100% at a concentration of 0.4 g L^-1 after 8 h, respectively. 1,2-Dimethoxy-4(2-propenyl) benzene is a potential botanical antifungal agent for controling of plant fungal diseases.展开更多
Adsorption can be used to recover effectively the volatile organic gases(VOCs)in the exhaust gas from factories through using an appropriate adsorption bed.Due to form a physical or chemical bond,adsorption occurs bet...Adsorption can be used to recover effectively the volatile organic gases(VOCs)in the exhaust gas from factories through using an appropriate adsorption bed.Due to form a physical or chemical bond,adsorption occurs between the porous solid medium and the liquid or gas multi component fluid mixture.The regeneration capa-city of the adsorbent is as important as the adsorption capacity and it determines the economics of the adsorption system.The regeneration of adsorbent can be realized through changing the pressure or temperature of the system.Here,activated carbon samples from coconut shell were prepared and characterized.Benzene or formal-dehyde in the mixed air was used as the adsorption object,and the adsorption experiment was carried out in a U-shaped bed.Discussed how adsorption was affected by activated carbon type,adsorbate and temperature.The results show that oxidation modifed activated carbon can increase the adsorption effect of form aldehyde,but will reduce the ad sorption effect of benzene,because their ad sorption mechanism is different.At 30℃,the saturated adsorption apacity of AC-0 for benzene is 437.0 mg/g.and that of AC-1 for formaldehyde is 670.5 mg/g.In the experimental range,it is found that the adsorption capacity increases with the decrease of temperature,and their changes are very consistent with the ftted ExpDecay1 function.展开更多
Motivated by the search for ways of a more efficient usage of the ubiquitous, and unexploited resources of methane, recent progress in the gas-phase activation of methane by metal dication complex ion is discussed. Th...Motivated by the search for ways of a more efficient usage of the ubiquitous, and unexploited resources of methane, recent progress in the gas-phase activation of methane by metal dication complex ion is discussed. The gas phase theoretical and experimental analysis on [Pb(Benzene)2]2+ was conducted. The [Pb(Benzene)2]2+ complex ions were prepared using a combination of the pick-up technique and high energy electron impact, and then held in a cold ion trap. Excitation with tuneable UV radiation resulted in the formation of [Pb(Benzene)2(H2O)]2+, [Pb(Benzene)2(H2O)2]2+, [Pb(Benzene)]+, Pb+ and Benzene+ ions when the experimental results were analysed. The two optimised geometries of [Pb(Benzene)2]2+ namely the C2V eclipse and C2 staggered were observed. Methane activation of [Pb(Benzene)2]2+ complex ion yielded [Pb(Benzene)2(Me)]2+. [Pb(Benzene)2(H2O)(Me)2]2+,? [Pb(Benzene)2(H2O)(Me)]2+, [PbBenzene(Me)3]2+ and [Pb(Benzene)(Me)]2+. The PEC calculated binding energy of methane to lead benzene dication complex ion was approximately 25.45% higher than the value recorded on DFT calculation. This difference was due to the charge differences on the lead metal centre. While the actual calculated charge on the Pb metal in the optimised geometry was 1.68 the charge of +2 on the Pb metal was considered in the PEC calculation.展开更多
The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on...The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on modified and unmodified ACs and to estimate the activation energy for the desorption of benzene on the modified ACs.Starting with unmodified ACs,two modified ACs were prepared by using two different types of silane,designated by KH560 and 1706.The results showed that the activation energy for the desorption of benzene on KH560/AC and 1706/AC was higher than that on unmodified AC.In addition,the activation energy for the desorption of water on KH560/AC and 1706/AC was lower than that on unmodified AC.The breakthrough curves of benzene obtained from the experimental observations under different humidity conditions were compared with the results of the TPD experiments.The results show that the modified ACs are less affected by water,whereas the unmodified ACs are more affected by water,indicating that surface modification by organosilane compounds can improve the adsorption of benzene on the activated carbo,which weakens the adsorption of water.展开更多
Toxicities (–lgEC50) of 16 halogeno-benzenes against vibrio qinghaiensis (Q67) were measured systematically, and their 2D-QSAR model (R2=0.875, q2=0.821) was established, which included two parameters: average...Toxicities (–lgEC50) of 16 halogeno-benzenes against vibrio qinghaiensis (Q67) were measured systematically, and their 2D-QSAR model (R2=0.875, q2=0.821) was established, which included two parameters: averaged polarizability (α) and total energy (TE). The proposed model indicated that the toxicities of this kind of compounds were proportionate to α, i.e., their toxicities were relative to the molecular volume. Furthermore, 3D-QSAR model (R2=0.929, q2=0.712) of –lgEC50 was proposed by using comparative molecular force field (CoMFA) based on the molecular simulation. To our interest, 3D-QSAR model suggested that the hydrophobicity of substituents was the dominating factor for the toxicities, the electrostatic effect was the secondly important, and the steric field gave the least contribution. Comparably, the prediction ability of the 3D-QSAR model is slightly more advantageous than that of 2D-QSAR, and they can be used complementally in the toxicity description of this kind of compounds.展开更多
We report a study on photo-ionization of benzene and aniline with incidental subsequent dissociation by the customized reflection time-of-flight mass spectrometer utilizing a deep ultraviolet 177.3 nm laser.Highly eff...We report a study on photo-ionization of benzene and aniline with incidental subsequent dissociation by the customized reflection time-of-flight mass spectrometer utilizing a deep ultraviolet 177.3 nm laser.Highly efficient ionization of benzene is observed with a weak C4H3+fragment formed by undergoing disproportional C-C bond dissociation.In comparison,a major C5H6+·fragment and a minor C6H6+·radical are produced in the ionization of aniline pertaining to the removal of CNH·and NH·radicals,respectively.First-principles calculation is employed to reveal the photo-dissociation pathways of these two molecules having a structural difference of just an amino group.It is demonstrated that hydrogen atom transfer plays an important role in the cleavage of C-C or C-N bonds in benzene and aniline ions.This study is helpful to understand the underlying mechanisms of chemical bond fracture of benzene ring and related aromatic molecules.展开更多
In this work, we determined the surface characteristics of natural (CA-1) and HNO3 treated (CA-2) CAG. Equilibrium, kinetics and breakthrough for adsorption of benzene and toluene by CA-1 and CA-2 were studied. Concen...In this work, we determined the surface characteristics of natural (CA-1) and HNO3 treated (CA-2) CAG. Equilibrium, kinetics and breakthrough for adsorption of benzene and toluene by CA-1 and CA-2 were studied. Concentrations of benzene and toluene (mg/L) were determined by gas chromatography with headspace extraction. The data of adsorption kinetic and equilibrium were best fitted by pseudo-second order model and Langmuir isotherm, respectively. The best results of benzene and toluene adsorption from fixed bed were obtained at volumetric flow rate (Q1 = 70 mL/min) using adsorbent CA-2. The study of inferential statistics revealed that CA-1 and CA-2 adsorbents are statistically different at a 5% significance level.展开更多
Pd/Fe bimetallic catalysts were synthesized via chemical deposition and used to treat m-DCB.Batch experiments demonstrated that the Pd/Fe bimetallic particles could effectively dechlorinate m-DCB.The dechlorination ef...Pd/Fe bimetallic catalysts were synthesized via chemical deposition and used to treat m-DCB.Batch experiments demonstrated that the Pd/Fe bimetallic particles could effectively dechlorinate m-DCB.The dechlorination efficiency reached 90% at a Pd/Fe loading ratio of 0.02% (mass) and metal to solution ratio 4g∶75ml in 90 min.Dechlorination was affected by several factors such as reaction temperature, pH, Pd/Fe ratio, and the induction of Pd/Fe catalysts.Chlorobenzene represents the partially stable dechlorinated intermediate in the generation of the final product (i.e., benzene), while part of m-DCB was dechlorinated to benzene directly.The dechlorination reaction was believed to take place mainly on the active surface sites of the Pd/Fe bimetallic particles via a pseudo-first order reaction, and the activation energy of this reaction was found to be 96.6 kJ·mol -1 .展开更多
文摘The acidic properties of aluminum phosphate (A1PO4-5) solid acid catalyst were characterized by tem- perature programmed desorption (TPD) of ammonia (NH3), n-propylamine (n-C3HTNH2), iso-propylamine [(CH3)2CHNH2] and n-dipropylamine [(C3H7)2NH] separately, and its catalytic performance in benzene alkylation with long chain olefin was studied in a fixed-bed reactor. The characterized acid amount of catalyst increased with the basicity of adsorbates. With increase of the activation temperature of catalyst, the acid amount characterized by NHa-TPD decreased, however, it increased when characterized by TPD using three other adsorbates. The desorption kinetics of TPD process and the deactivation kinetics of catalyst were investigated. The acidity and catalytic per- formance of catalyst was also correlated. The results showed that the acid amount and strength are well correlated with the activity and stability using NH3 as adsorbate, respectively, which indicated NH3 was a better basic adsorbate. It was also found that the catalyst with higher acid amount and lower acid strength on the surface exhibited the better catalytic performance and stability.
基金the financial support by the Special Fund for Basic Scientific Research of Central Colleges (No.2009KH10)the Beijing Postdoctoral Fund (No. B148)the Green Shoots Plan of Beijing Academy of Science and Technology of China (No. B142)
文摘A series of activated carbons from Taixi anthracite were prepared by steam activation in the presence of KOH and then they were modified by different methods. The regulation of porosity and the modification of surface chemistry were carried out with the aim to improve the benzene adsorption capacity of activated carbon. The influences of KOH and activation process parameters including activation temperature, activation time and steam flow rate on porosity of activated carbon were evaluated, and the effect of modification methods on surface chemistry was investigated. Also, the relationship between benzene adsorption capacity and porosity and surface chemistry was analyzed. Results show that activation temperature is the dominant factor in the activation process; the introduction of KOH into the raw material can enhance the reactivity of char in activation process, meanwhile it shows a negative effect on the porosity development, especially on the mesopore development. Results of FTIR analysis indicate that anthracite-based activated carbon with condensed aromatics and chemically inert oxygen does not present the nature to be surface modified. Besides, benzene adsorption capacity has an approximate linear relationship with surface area and in our preparation, benzene adsorption capacity and surface area of activated carbon are up to 1210 m 2 /g and 423 mg/g, respectively.
基金supported by the Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University,China),Ministry of Education of China (07109001-11)Guangxi Natural Science Fund Project,China (0991097)
文摘Acorus tatarinowii Schott is a traditional Chinese medicine plant and has multiple bioactivities in medicine and pesticide field. In this study, the antifungal compound 1,2-dimethoxy-4(2-propenyl) benzene was isolated from A. tatarinowii Schott by activity-directed isolation method, and the inhibitory activity of the extract and 1,2-dimethoxy-4(2-propenyl) benzene against seven plant pathogenic fungi was evaluated. The results showed that the extract and 1,2-dimethoxy-4(2- propenyl) benzene had high inhibitory activity against hyphal growth of Thielaviopsis paradoxa (de Seynes) V. Hohnel, Pestalotia mangiferae P. Henn., Fusarium oxysporum f. sp. niveum (E. F. Smith) Syn. et Hans., Alternaria alternate Tanaka, Colletotrichum musae (Berk et Curt) V. Arx, Sphaceloma fawcettii Jenk., and Mycosphaerella sentina (Fr.) Schroter. The EC50 values of extract were 1.6162, 1.6811, 1.1253, 3.5771, 1.7024, 2.2284, and 2.2221 g L^-1, respectively, and the EC50 values of 1,2-dimethoxy-4(2-propenyl) benzene were 0.1021, 0.0997, 0.0805, 0.1742, 0.1503, 0.1853, and 0.1924 g L^-1, respectively. 1,2-Dimethoxy-4(2-propenyl) benzene also inhibited spores germination of T. paradoxa (de Seynes) V. Hohnel and F. oxysporum f. sp. niveum (E. F. Smith) Syn. et Hans., with the inhibitory rates of 98.81 and 100% at a concentration of 0.4 g L^-1 after 8 h, respectively. 1,2-Dimethoxy-4(2-propenyl) benzene is a potential botanical antifungal agent for controling of plant fungal diseases.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Grants Nos.21978287 and 21906139)Henan Province Key Research and Development and Promotion Special(No.182102311016).
文摘Adsorption can be used to recover effectively the volatile organic gases(VOCs)in the exhaust gas from factories through using an appropriate adsorption bed.Due to form a physical or chemical bond,adsorption occurs between the porous solid medium and the liquid or gas multi component fluid mixture.The regeneration capa-city of the adsorbent is as important as the adsorption capacity and it determines the economics of the adsorption system.The regeneration of adsorbent can be realized through changing the pressure or temperature of the system.Here,activated carbon samples from coconut shell were prepared and characterized.Benzene or formal-dehyde in the mixed air was used as the adsorption object,and the adsorption experiment was carried out in a U-shaped bed.Discussed how adsorption was affected by activated carbon type,adsorbate and temperature.The results show that oxidation modifed activated carbon can increase the adsorption effect of form aldehyde,but will reduce the ad sorption effect of benzene,because their ad sorption mechanism is different.At 30℃,the saturated adsorption apacity of AC-0 for benzene is 437.0 mg/g.and that of AC-1 for formaldehyde is 670.5 mg/g.In the experimental range,it is found that the adsorption capacity increases with the decrease of temperature,and their changes are very consistent with the ftted ExpDecay1 function.
文摘Motivated by the search for ways of a more efficient usage of the ubiquitous, and unexploited resources of methane, recent progress in the gas-phase activation of methane by metal dication complex ion is discussed. The gas phase theoretical and experimental analysis on [Pb(Benzene)2]2+ was conducted. The [Pb(Benzene)2]2+ complex ions were prepared using a combination of the pick-up technique and high energy electron impact, and then held in a cold ion trap. Excitation with tuneable UV radiation resulted in the formation of [Pb(Benzene)2(H2O)]2+, [Pb(Benzene)2(H2O)2]2+, [Pb(Benzene)]+, Pb+ and Benzene+ ions when the experimental results were analysed. The two optimised geometries of [Pb(Benzene)2]2+ namely the C2V eclipse and C2 staggered were observed. Methane activation of [Pb(Benzene)2]2+ complex ion yielded [Pb(Benzene)2(Me)]2+. [Pb(Benzene)2(H2O)(Me)2]2+,? [Pb(Benzene)2(H2O)(Me)]2+, [PbBenzene(Me)3]2+ and [Pb(Benzene)(Me)]2+. The PEC calculated binding energy of methane to lead benzene dication complex ion was approximately 25.45% higher than the value recorded on DFT calculation. This difference was due to the charge differences on the lead metal centre. While the actual calculated charge on the Pb metal in the optimised geometry was 1.68 the charge of +2 on the Pb metal was considered in the PEC calculation.
基金Funded by the National Natural Science Foundation of China (No.20576041)
文摘The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on modified and unmodified ACs and to estimate the activation energy for the desorption of benzene on the modified ACs.Starting with unmodified ACs,two modified ACs were prepared by using two different types of silane,designated by KH560 and 1706.The results showed that the activation energy for the desorption of benzene on KH560/AC and 1706/AC was higher than that on unmodified AC.In addition,the activation energy for the desorption of water on KH560/AC and 1706/AC was lower than that on unmodified AC.The breakthrough curves of benzene obtained from the experimental observations under different humidity conditions were compared with the results of the TPD experiments.The results show that the modified ACs are less affected by water,whereas the unmodified ACs are more affected by water,indicating that surface modification by organosilane compounds can improve the adsorption of benzene on the activated carbo,which weakens the adsorption of water.
基金supported by the Analysis Science and Technology Project of Zhejiang Province (2009F70007)
文摘Toxicities (–lgEC50) of 16 halogeno-benzenes against vibrio qinghaiensis (Q67) were measured systematically, and their 2D-QSAR model (R2=0.875, q2=0.821) was established, which included two parameters: averaged polarizability (α) and total energy (TE). The proposed model indicated that the toxicities of this kind of compounds were proportionate to α, i.e., their toxicities were relative to the molecular volume. Furthermore, 3D-QSAR model (R2=0.929, q2=0.712) of –lgEC50 was proposed by using comparative molecular force field (CoMFA) based on the molecular simulation. To our interest, 3D-QSAR model suggested that the hydrophobicity of substituents was the dominating factor for the toxicities, the electrostatic effect was the secondly important, and the steric field gave the least contribution. Comparably, the prediction ability of the 3D-QSAR model is slightly more advantageous than that of 2D-QSAR, and they can be used complementally in the toxicity description of this kind of compounds.
基金supported by the National Natural Science Foundation of China(No.91536105,No.11174186,No.21722308)the National Project Development of Advanced Scientific Instruments Based on Deep Ultraviolet Laser Source(No.Y31M0112C1)+2 种基金the Beijing Natural Science Foundation(No.2192064)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDB-SSW-SLH024)financial support from the Tianshan Scholar Program。
文摘We report a study on photo-ionization of benzene and aniline with incidental subsequent dissociation by the customized reflection time-of-flight mass spectrometer utilizing a deep ultraviolet 177.3 nm laser.Highly efficient ionization of benzene is observed with a weak C4H3+fragment formed by undergoing disproportional C-C bond dissociation.In comparison,a major C5H6+·fragment and a minor C6H6+·radical are produced in the ionization of aniline pertaining to the removal of CNH·and NH·radicals,respectively.First-principles calculation is employed to reveal the photo-dissociation pathways of these two molecules having a structural difference of just an amino group.It is demonstrated that hydrogen atom transfer plays an important role in the cleavage of C-C or C-N bonds in benzene and aniline ions.This study is helpful to understand the underlying mechanisms of chemical bond fracture of benzene ring and related aromatic molecules.
基金Graduate Program in Chemical Engineering from the Federal University of Para(UFPA-PPEQ)Capes-CNPq
文摘In this work, we determined the surface characteristics of natural (CA-1) and HNO3 treated (CA-2) CAG. Equilibrium, kinetics and breakthrough for adsorption of benzene and toluene by CA-1 and CA-2 were studied. Concentrations of benzene and toluene (mg/L) were determined by gas chromatography with headspace extraction. The data of adsorption kinetic and equilibrium were best fitted by pseudo-second order model and Langmuir isotherm, respectively. The best results of benzene and toluene adsorption from fixed bed were obtained at volumetric flow rate (Q1 = 70 mL/min) using adsorbent CA-2. The study of inferential statistics revealed that CA-1 and CA-2 adsorbents are statistically different at a 5% significance level.
基金浙江省教育厅资助 (No 2 0 0 3 195 )浙江省科技计划项目 (No 2 0 0 4C3 40 0 6)共同资助~~
文摘Pd/Fe bimetallic catalysts were synthesized via chemical deposition and used to treat m-DCB.Batch experiments demonstrated that the Pd/Fe bimetallic particles could effectively dechlorinate m-DCB.The dechlorination efficiency reached 90% at a Pd/Fe loading ratio of 0.02% (mass) and metal to solution ratio 4g∶75ml in 90 min.Dechlorination was affected by several factors such as reaction temperature, pH, Pd/Fe ratio, and the induction of Pd/Fe catalysts.Chlorobenzene represents the partially stable dechlorinated intermediate in the generation of the final product (i.e., benzene), while part of m-DCB was dechlorinated to benzene directly.The dechlorination reaction was believed to take place mainly on the active surface sites of the Pd/Fe bimetallic particles via a pseudo-first order reaction, and the activation energy of this reaction was found to be 96.6 kJ·mol -1 .