The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene con...The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene conversion presented the sharp decrease due to catalyst deactivation. The deactivation mechanism of betazeolite catalyst was investigated by characterizing the fresh and used catalysts. The XRD, SEM and TEM results show that the crystalline and particle size of the beta-zeolite catalyst almost remained stable during the alkylation cycles. The drop in catalytic activity and benzene conversion could be explained by the TG, BET,NH_3-TPD and GC–MS results. The organic matters mainly consisted of ethylbenzene, p-xylene and 1-ethyl-3-(1-methyl) benzene produced in the benzene alkylation deposited in the catalyst, which strongly reduced the specific surface area of beta-zeolite catalyst. Moreover, during the reaction cycles, the amount of acidity also significantly decreased. As a result, the catalyst deactivation occurred. To maintain the catalytic performance,the catalyst regeneration was carried out by using ethanol rinse and calcination. The deactivated catalyst could be effectively regenerated by the calcination method and the good catalytic performance was obtained.展开更多
The reaction mechanism for alkylation of benzene with propylene over the β zeolite and the MCM-22 zeolite were investigated respectively by in-situ IR spectrometry. Three types of experiments were carried out. (1) ...The reaction mechanism for alkylation of benzene with propylene over the β zeolite and the MCM-22 zeolite were investigated respectively by in-situ IR spectrometry. Three types of experiments were carried out. (1) IR spectra of the gas-phase propylene, benzene and isopropyl benzene were recorded. (2) IR spectra of the above-mentioned substances as adsorbates that have combined with the zeolite wafer were recorded. (3) IR spectra of the reaction modes were recorded. The test results showed that the alkytation reaction over the zeolite β was ascribed to the mechanism of carbonium ions, whereas the alkylation reaction over the zeolite MCM-22 was ascribed to the synchronous reaction mechanism.展开更多
In the present work, the effect of oxides on the alkylation of benzene with 1-dodecene was comprehensively investigated over MCM-49 n-heptanol, n-heptaldehyde and n-heptanoic acid were selected as the model oxides her...In the present work, the effect of oxides on the alkylation of benzene with 1-dodecene was comprehensively investigated over MCM-49 n-heptanol, n-heptaldehyde and n-heptanoic acid were selected as the model oxides herein, and obvious decrease of lifetime could be caused by only trace amount of oxides added in the feedstocks. However, the deactivated catalysts were difficult to be regenerated by extraction with hot benzene. Additionally, coke-burning was also proved to be incapable to regenerate the deactivated catalysts mainly for the dealumination during calcination. Further characterizations complementary with DFT calculations were conducted to demonstrate that the deactivation was mainly due to the firm adsorption of oxides on the acid sites.展开更多
Zeolites are a promising support for Pd catalysts in leanmethane(CH_(4))combustion.Herein,three types of zeolites(H-MOR,H-ZSM-5 and H-Y)were selected to estimate their structural effects and deactivation mechanisms in...Zeolites are a promising support for Pd catalysts in leanmethane(CH_(4))combustion.Herein,three types of zeolites(H-MOR,H-ZSM-5 and H-Y)were selected to estimate their structural effects and deactivation mechanisms in CH_(4)combustion.We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states.Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity,with activation energy(Ea)at 73 kJ/mol,while Pd/H-ZSM-5 displayed the highest turnover frequency(TOF)at 19.6×10^(−3)sec^(−1),presumably owing to its large particles with more step sites providing active sites in one particle for CH_(4)activation.Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ions on ion-exchange sites yielded the lowest apparent activity and TOF.Furthermore,Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition,but introducing 3 vol.%H_(2)O caused the CH_(4)conversion rate on Pd/H-MOR drop from 100%to 63%and that on Pd/H-ZSM-5 decreased remarkably from 82%to 36%.The former was shown to originate fromzeolite structural dealumination,and the latter principally owed to Pd aggregation and the loss of active PdO.展开更多
Methanol to olefins(MTO)as an important reaction in C1 chemistry can effectively transform non-petroleum carbon resources into value-added chemicals.Zeolites have been widely used as MTO catalysts.However,they usually...Methanol to olefins(MTO)as an important reaction in C1 chemistry can effectively transform non-petroleum carbon resources into value-added chemicals.Zeolites have been widely used as MTO catalysts.However,they usually suffer from a rapid deactivation due to bulky coke species production,and thus require continuous regenerations in industrial application.The key to design and develop highly stable zeolite catalysts for MTO process is to unravel the deactivation mechanism and clarify the structure–performance relationship of catalysts.Here,in this mini-review,we investigate the critical intermediate species inducing zeolite deactivation and analyze the formation and evolution pathways of polycyclic aromatic hydrocarbons(PAHs)that are the precursors of carbonaceous deposits.In addition,some methods to alleviate the coking mainly including acid regulation,morphology modification and process optimization,are also summarized.展开更多
Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeol...Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeolites, a key step in this new process, has attracted increasing attention due to the high reaction efficiency and promising industrial application.In recent years, continuous efforts have been made on improving the activity and stability of the zeolites.From a mechanistic point of view, DME carbonylation to MA, involving the formation of C–C bond, is achieved via the Koch-type CO insertion into DME within the 8-member ring(8-MR) pores of zeolites, typically HMOR and HZSM-35.The unique geometric configuration of the 8-MR pore endowed the formation of the key intermediate(acetyl, CH3CO^*), possibly by a spatial confinement of the transition state during CO insertion into the surface O–CH3 group.This review article summarizes the main progress on zeolite-catalyzed DME carbonylation, including reaction kinetics and mechanism, theoretical calculations, and experimental strategies developed for populating acid sites and engineering pore structure of the zeolites in order to enhance the overall performance.展开更多
Small pore zeolites, containing 8-rings as the largest, are widely employed as catalysts in the process of methanol-to-olefins (MTO). Reactants and products dif- fuse with constraints through 8-rings and this is one...Small pore zeolites, containing 8-rings as the largest, are widely employed as catalysts in the process of methanol-to-olefins (MTO). Reactants and products dif- fuse with constraints through 8-rings and this is one of the reaction bottlenecks related to zeolite micropore topology. Small pore zeolites and silicon-aluminophosphates (SAPOs) containing cavities, where olefins are mainly formed through the hydrocarbon pool (HP) mechanism, are frequently tested for MTO. Shape selectivity of transition states within the side-chain methylation will be reviewed as this is one of the controlling steps of the MTO process, with particular attention to the role of hexam- ethylbenzene (HMB) and heptamethylbenzenium cation (HeptaMB~), which are the most tipically detected reaction intermediates, common to the paring and side-chain routes within the HP mechanism. The relative stability of these and other species will be reviewed in terms of confinement effects in different cage-based zeolites. The role of the different alkylating agents, methanol, dimethyl ether (DME), and surface methoxy species (SMS) will also be reviewed from the computational viewpoint.展开更多
基金Supports by the National Key Research and Development Plan(2016YFB0301503)the Jiangsu Natural Science Foundation for Distinguished Young Scholars(BK20150044)+3 种基金the National Natural Science Foundation of China(91534110,21606124)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(14KJB530004)the Foundation from State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201402,ZK201407)the Technology Innovation Foundation for Science and Technology Enterprises in Jiangsu Province(BC2015008)
文摘The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene conversion presented the sharp decrease due to catalyst deactivation. The deactivation mechanism of betazeolite catalyst was investigated by characterizing the fresh and used catalysts. The XRD, SEM and TEM results show that the crystalline and particle size of the beta-zeolite catalyst almost remained stable during the alkylation cycles. The drop in catalytic activity and benzene conversion could be explained by the TG, BET,NH_3-TPD and GC–MS results. The organic matters mainly consisted of ethylbenzene, p-xylene and 1-ethyl-3-(1-methyl) benzene produced in the benzene alkylation deposited in the catalyst, which strongly reduced the specific surface area of beta-zeolite catalyst. Moreover, during the reaction cycles, the amount of acidity also significantly decreased. As a result, the catalyst deactivation occurred. To maintain the catalytic performance,the catalyst regeneration was carried out by using ethanol rinse and calcination. The deactivated catalyst could be effectively regenerated by the calcination method and the good catalytic performance was obtained.
文摘The reaction mechanism for alkylation of benzene with propylene over the β zeolite and the MCM-22 zeolite were investigated respectively by in-situ IR spectrometry. Three types of experiments were carried out. (1) IR spectra of the gas-phase propylene, benzene and isopropyl benzene were recorded. (2) IR spectra of the above-mentioned substances as adsorbates that have combined with the zeolite wafer were recorded. (3) IR spectra of the reaction modes were recorded. The test results showed that the alkytation reaction over the zeolite β was ascribed to the mechanism of carbonium ions, whereas the alkylation reaction over the zeolite MCM-22 was ascribed to the synchronous reaction mechanism.
文摘In the present work, the effect of oxides on the alkylation of benzene with 1-dodecene was comprehensively investigated over MCM-49 n-heptanol, n-heptaldehyde and n-heptanoic acid were selected as the model oxides herein, and obvious decrease of lifetime could be caused by only trace amount of oxides added in the feedstocks. However, the deactivated catalysts were difficult to be regenerated by extraction with hot benzene. Additionally, coke-burning was also proved to be incapable to regenerate the deactivated catalysts mainly for the dealumination during calcination. Further characterizations complementary with DFT calculations were conducted to demonstrate that the deactivation was mainly due to the firm adsorption of oxides on the acid sites.
基金supported by the National Key R&D Program of China(No.2022YFC3701603)the National Natural Science Foundation of China(Nos.22106133,52070168)+1 种基金the Key R&D Plan of Zhejiang Province(No.2023C03127)the Fundamental Research Funds for the Central Universities(No.226-2022-00150).
文摘Zeolites are a promising support for Pd catalysts in leanmethane(CH_(4))combustion.Herein,three types of zeolites(H-MOR,H-ZSM-5 and H-Y)were selected to estimate their structural effects and deactivation mechanisms in CH_(4)combustion.We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states.Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity,with activation energy(Ea)at 73 kJ/mol,while Pd/H-ZSM-5 displayed the highest turnover frequency(TOF)at 19.6×10^(−3)sec^(−1),presumably owing to its large particles with more step sites providing active sites in one particle for CH_(4)activation.Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ions on ion-exchange sites yielded the lowest apparent activity and TOF.Furthermore,Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition,but introducing 3 vol.%H_(2)O caused the CH_(4)conversion rate on Pd/H-MOR drop from 100%to 63%and that on Pd/H-ZSM-5 decreased remarkably from 82%to 36%.The former was shown to originate fromzeolite structural dealumination,and the latter principally owed to Pd aggregation and the loss of active PdO.
基金supported by the National Key R&D Program of China(2023YFB4103700,2023YFB4103204)the National Natural Science Foundation of China(21991090,21991092,22272195,22322208,U1910203,U22A20431)+4 种基金the Technical Support Talent Program of the Chinese Academy of Sciences(YJSZC2023001)the Natural Science Foundation of Shanxi Province of China(202203021224009)the Innovation Foundation of Institute of Coal Chemistry,Chinese Academy of Sciences(SCJC-DT-2023-06)the Youth Innovation Promotion Association CAS(2021172)the Excellent Doctoral Student Award and Subsidy Program of Shanxi Province(BK2018001)。
文摘Methanol to olefins(MTO)as an important reaction in C1 chemistry can effectively transform non-petroleum carbon resources into value-added chemicals.Zeolites have been widely used as MTO catalysts.However,they usually suffer from a rapid deactivation due to bulky coke species production,and thus require continuous regenerations in industrial application.The key to design and develop highly stable zeolite catalysts for MTO process is to unravel the deactivation mechanism and clarify the structure–performance relationship of catalysts.Here,in this mini-review,we investigate the critical intermediate species inducing zeolite deactivation and analyze the formation and evolution pathways of polycyclic aromatic hydrocarbons(PAHs)that are the precursors of carbonaceous deposits.In addition,some methods to alleviate the coking mainly including acid regulation,morphology modification and process optimization,are also summarized.
基金supported by the National Natural Science Foundation of China(Grant no.20973166)
文摘Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeolites, a key step in this new process, has attracted increasing attention due to the high reaction efficiency and promising industrial application.In recent years, continuous efforts have been made on improving the activity and stability of the zeolites.From a mechanistic point of view, DME carbonylation to MA, involving the formation of C–C bond, is achieved via the Koch-type CO insertion into DME within the 8-member ring(8-MR) pores of zeolites, typically HMOR and HZSM-35.The unique geometric configuration of the 8-MR pore endowed the formation of the key intermediate(acetyl, CH3CO^*), possibly by a spatial confinement of the transition state during CO insertion into the surface O–CH3 group.This review article summarizes the main progress on zeolite-catalyzed DME carbonylation, including reaction kinetics and mechanism, theoretical calculations, and experimental strategies developed for populating acid sites and engineering pore structure of the zeolites in order to enhance the overall performance.
文摘Small pore zeolites, containing 8-rings as the largest, are widely employed as catalysts in the process of methanol-to-olefins (MTO). Reactants and products dif- fuse with constraints through 8-rings and this is one of the reaction bottlenecks related to zeolite micropore topology. Small pore zeolites and silicon-aluminophosphates (SAPOs) containing cavities, where olefins are mainly formed through the hydrocarbon pool (HP) mechanism, are frequently tested for MTO. Shape selectivity of transition states within the side-chain methylation will be reviewed as this is one of the controlling steps of the MTO process, with particular attention to the role of hexam- ethylbenzene (HMB) and heptamethylbenzenium cation (HeptaMB~), which are the most tipically detected reaction intermediates, common to the paring and side-chain routes within the HP mechanism. The relative stability of these and other species will be reviewed in terms of confinement effects in different cage-based zeolites. The role of the different alkylating agents, methanol, dimethyl ether (DME), and surface methoxy species (SMS) will also be reviewed from the computational viewpoint.