In this paper,we demonstrate an all-fiber linearly polarized fiber laser oscillator.The single polarization of the oscillator is achieved through the careful designing of the active fiber coiling.The relationship betw...In this paper,we demonstrate an all-fiber linearly polarized fiber laser oscillator.The single polarization of the oscillator is achieved through the careful designing of the active fiber coiling.The relationship between fiber coiling diameter and polarization extinction ratio and optical efficiency is studied,whose results lead to an optimized system.The thermal management of the oscillator is also refined,which allows the oscillator to reach a maximum output power of44.1 W with an optical-to-optical efficiency of 57.9%.A high average polarization extinction ratio of 21.6 d B is achieved during a 2-hour stability test.The oscillator also owns a narrow 3-d B bandwidth of 0.1 nm,as well as near-diffraction-limit beam quality of M^2~ 1.14.展开更多
An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was rea...An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was realized for continuous wave operation. By further increasing the pump power, stable Q-switched pulse trains are obtained when the pump power ranges from 38 mW to 125 mW, corresponding to repetition rate varying from 40.84 kHz to 66.24 kHz, the pulse width from 2.0 μs to 1.0 μs,and the highest single pulse energy of 40.6 nJ respectively.展开更多
For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the func...For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the function of the modulator, a theoretical model of modulation effect to AOFCTs is built up in this paper. The effect of the amplitude of the modulation signal to the output intensity of AOFCTs is theoretically formulated and numerical calculated. The results show that the modulation voltage variation could affect the output accuracies significantly. This might be some references on the investigation for practical applications of AOFCTs.展开更多
The advantages of the all-fiber optical current transformer include but are not limited to being small in size,having no magnetic saturation,exhibiting high measurement accuracy,and boasting strong electromagnetic int...The advantages of the all-fiber optical current transformer include but are not limited to being small in size,having no magnetic saturation,exhibiting high measurement accuracy,and boasting strong electromagnetic interference resistance.However,the high cost of the all-fiber optical transformer limits its promotion and application in engineering.This paper proposes a design scheme of an independent double acquisition loop for the all-fiber optical current transformer based on the single optical path.Firstly,based on the closed-loop control mode and open-loop control mode,the twochannel sampling signal demand for relay protection,and the independent dual-acquisition loop design scheme of the all-fiber optical current transformer are proposed.Secondly,the reliability and economic feasibility of the scheme are demonstrated by an analysis of system failure and cost.The results show that the scheme can actualize the acquisition function of two independent all-fiber optical current transformer products on a single all-fiber current transformer in an integrated manner,which greatly reduces the cost of the all-fiber optical current transformer in engineering applications.展开更多
We present a high-power, single-frequency, narrow linewidth fiber amplifier based on master oscillator power amplification chains in an all-fiber configuration. The effect of the delivery fiber on the maximum output p...We present a high-power, single-frequency, narrow linewidth fiber amplifier based on master oscillator power amplification chains in an all-fiber configuration. The effect of the delivery fiber on the maximum output power is studied. A home-made 1064-nm seed laser with a 20-kHz linewidth is boosted to 129 W, and limited by stimulated Brillouin scattering (SBS) when the delivery fiber is 1.2 m long By shortening the delivery fiber length to 0.7 m, the SBS threshold is increased efficiently and the maximum output power rises to 168 W with an 82.9% power conversion efficiency. The experimental results indicate that the output power can be further raised by shortening the delivery fiber length and increasing the pump power.展开更多
An optical length measuring system base on all-fiber optic interferometer is proposed. The theoretical analysis indicates that, when the two branches of the interferometer are equal, the output have the maximum cohere...An optical length measuring system base on all-fiber optic interferometer is proposed. The theoretical analysis indicates that, when the two branches of the interferometer are equal, the output have the maximum coherent intensity. Therefore, the optical length can be obtained by measuring the distance of collimator movement. Through the experiment and simulation, the impact of the signal-to-noise ratio and fluctuation of the coupling efficiency on null error has been obtained.展开更多
A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification(CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillat...A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification(CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied.We find that the compressed pulse duration is dependent on the amplified energy,the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ,while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ.The measured energy fluctuation is approximately 0.46% root mean square(RMS) over 2 h.The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines,medical therapy,and scientific studies.展开更多
In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient ...In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.展开更多
We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dis...We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.展开更多
An all optical all fiber optical bistability operation has been realized in an all fiber cavity consisted with Er doped fiber and optical fiber loop mirrors. The experimental bistability threshold is consistent w...An all optical all fiber optical bistability operation has been realized in an all fiber cavity consisted with Er doped fiber and optical fiber loop mirrors. The experimental bistability threshold is consistent with the theory.展开更多
We report a supercontinuum source generated in seven-core photonic crystal fibers(PCFs) pumped by a self-made all-fiber picosecond pulsed broadband fiber amplifier. The amplifier's output average power is 60 W at 1...We report a supercontinuum source generated in seven-core photonic crystal fibers(PCFs) pumped by a self-made all-fiber picosecond pulsed broadband fiber amplifier. The amplifier's output average power is 60 W at 1150 nm with spectral width of 260 nm, and its repetition rate is 8.47 MHz with pulse width of 221 ps. With two different lengths of seven-core PCF, different output powers and spectra are obtained. When a 10 m long seven-core PCF is chosen, the output supercontinuum covers the wavelength range from 620 nm to 1700 nm, with the output power of 11.7 W. With only 2 m long seven-core PCF used in the same experiment, the wavelength of the supercontinuum spans from 680 nm to 1700 nm,with the output power of 20.4 W. The results show that the pulse width is 385 ps in the 10 m long seven-core PCF and 255 ps in the 2 m long one, respectively, due to the normal dispersion of the PCF.展开更多
For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)...For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)networks,are employed for serving as lightweight non-metal current collectors.The results indicate that all the carbon-based current collectors have electrochemical stability in the acidic electrolyte environments.In the assembled aluminium batteries with all-carbon positive electrodes,thermal annealing process on the carbon-based current collectors has substantially promoted the entire electrochemical energy storage performance.Additionally,both the structure configuration and chemical components of the current collectors have also great impact on the rate capability and cycling stability,implying that the 3D BDC networks are more favorable to offer promoted energy storage capability.Implication of the results from suggests that the carbon-based current collectors and all-carbon positive electrodes are able to deliver more advantages in energy storage behaviors in comparison with the traditional positive electrodes with metal Mo current collectors.Such novel strategy promises a new route for fabricating highperformance positive electrodes for stable advanced aluminium batteries.展开更多
s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability thresho...s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability threshold is consistent with the theory.展开更多
A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influe...A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influence of pump intensity on the phase difference between the TE and TM modes is studied. The polarization rotation effect is obtained in the EAM, and a novel all-optical fiber loop buffer is designed.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB1104500)the National Natural Science Foundation of China(Grant No.61675114)the Tsinghua University(THU)Initiative Scientific Research Program,China(Grant No.20151080709)
文摘In this paper,we demonstrate an all-fiber linearly polarized fiber laser oscillator.The single polarization of the oscillator is achieved through the careful designing of the active fiber coiling.The relationship between fiber coiling diameter and polarization extinction ratio and optical efficiency is studied,whose results lead to an optimized system.The thermal management of the oscillator is also refined,which allows the oscillator to reach a maximum output power of44.1 W with an optical-to-optical efficiency of 57.9%.A high average polarization extinction ratio of 21.6 d B is achieved during a 2-hour stability test.The oscillator also owns a narrow 3-d B bandwidth of 0.1 nm,as well as near-diffraction-limit beam quality of M^2~ 1.14.
基金Project supported by the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)
文摘An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was realized for continuous wave operation. By further increasing the pump power, stable Q-switched pulse trains are obtained when the pump power ranges from 38 mW to 125 mW, corresponding to repetition rate varying from 40.84 kHz to 66.24 kHz, the pulse width from 2.0 μs to 1.0 μs,and the highest single pulse energy of 40.6 nJ respectively.
文摘For actively modulated In-line Sagnac interferential all optic fiber current transformers (AOFCTs), the accuracies are directly affected by the amplitude of the modulation signal. In order to deeply undertand the function of the modulator, a theoretical model of modulation effect to AOFCTs is built up in this paper. The effect of the amplitude of the modulation signal to the output intensity of AOFCTs is theoretically formulated and numerical calculated. The results show that the modulation voltage variation could affect the output accuracies significantly. This might be some references on the investigation for practical applications of AOFCTs.
基金supported by the National Natural Science Foundation of China (No. U1866203)
文摘The advantages of the all-fiber optical current transformer include but are not limited to being small in size,having no magnetic saturation,exhibiting high measurement accuracy,and boasting strong electromagnetic interference resistance.However,the high cost of the all-fiber optical transformer limits its promotion and application in engineering.This paper proposes a design scheme of an independent double acquisition loop for the all-fiber optical current transformer based on the single optical path.Firstly,based on the closed-loop control mode and open-loop control mode,the twochannel sampling signal demand for relay protection,and the independent dual-acquisition loop design scheme of the all-fiber optical current transformer are proposed.Secondly,the reliability and economic feasibility of the scheme are demonstrated by an analysis of system failure and cost.The results show that the scheme can actualize the acquisition function of two independent all-fiber optical current transformer products on a single all-fiber current transformer in an integrated manner,which greatly reduces the cost of the all-fiber optical current transformer in engineering applications.
文摘We present a high-power, single-frequency, narrow linewidth fiber amplifier based on master oscillator power amplification chains in an all-fiber configuration. The effect of the delivery fiber on the maximum output power is studied. A home-made 1064-nm seed laser with a 20-kHz linewidth is boosted to 129 W, and limited by stimulated Brillouin scattering (SBS) when the delivery fiber is 1.2 m long By shortening the delivery fiber length to 0.7 m, the SBS threshold is increased efficiently and the maximum output power rises to 168 W with an 82.9% power conversion efficiency. The experimental results indicate that the output power can be further raised by shortening the delivery fiber length and increasing the pump power.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.E022050205
文摘An optical length measuring system base on all-fiber optic interferometer is proposed. The theoretical analysis indicates that, when the two branches of the interferometer are equal, the output have the maximum coherent intensity. Therefore, the optical length can be obtained by measuring the distance of collimator movement. Through the experiment and simulation, the impact of the signal-to-noise ratio and fluctuation of the coupling efficiency on null error has been obtained.
基金Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2012BAC23B03)the National Key Basic Research Program of China(Grant No.2013CB922401)the National Natural Science Foundation of China(Grant No.11474002)
文摘A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification(CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied.We find that the compressed pulse duration is dependent on the amplified energy,the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ,while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ.The measured energy fluctuation is approximately 0.46% root mean square(RMS) over 2 h.The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines,medical therapy,and scientific studies.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB327605 and 2010CB328304)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Research Foundation from Ministry of Education of China(Grant No.109015)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013RC1202)the China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.
文摘We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.
文摘An all optical all fiber optical bistability operation has been realized in an all fiber cavity consisted with Er doped fiber and optical fiber loop mirrors. The experimental bistability threshold is consistent with the theory.
基金Project supported by the National Natural Science Foundation of China(Grant No.61205047)
文摘We report a supercontinuum source generated in seven-core photonic crystal fibers(PCFs) pumped by a self-made all-fiber picosecond pulsed broadband fiber amplifier. The amplifier's output average power is 60 W at 1150 nm with spectral width of 260 nm, and its repetition rate is 8.47 MHz with pulse width of 221 ps. With two different lengths of seven-core PCF, different output powers and spectra are obtained. When a 10 m long seven-core PCF is chosen, the output supercontinuum covers the wavelength range from 620 nm to 1700 nm, with the output power of 11.7 W. With only 2 m long seven-core PCF used in the same experiment, the wavelength of the supercontinuum spans from 680 nm to 1700 nm,with the output power of 20.4 W. The results show that the pulse width is 385 ps in the 10 m long seven-core PCF and 255 ps in the 2 m long one, respectively, due to the normal dispersion of the PCF.
基金Financial support from National Key R&D Program of China(Grant No.2018YFB0104400)the National Natural Science Foundation of China(Grant Nos.11672341,11572002 and 51874019)+2 种基金Innovative Research Groups of the National Natural Science Foundation of China(Grant No.11521202)National Materials Genome Project(Grant No.2016YFB0700600)Beijing Natural Science Foundation(Grant Nos.16L00001 and 2182065).
文摘For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)networks,are employed for serving as lightweight non-metal current collectors.The results indicate that all the carbon-based current collectors have electrochemical stability in the acidic electrolyte environments.In the assembled aluminium batteries with all-carbon positive electrodes,thermal annealing process on the carbon-based current collectors has substantially promoted the entire electrochemical energy storage performance.Additionally,both the structure configuration and chemical components of the current collectors have also great impact on the rate capability and cycling stability,implying that the 3D BDC networks are more favorable to offer promoted energy storage capability.Implication of the results from suggests that the carbon-based current collectors and all-carbon positive electrodes are able to deliver more advantages in energy storage behaviors in comparison with the traditional positive electrodes with metal Mo current collectors.Such novel strategy promises a new route for fabricating highperformance positive electrodes for stable advanced aluminium batteries.
文摘s:Under The nonlinear optics condition the all-fiber optical bistability operation has been realized in an all-fiber resonator consisted of Er-dope fiber and optical fiber couplers.The experimental bistability threshold is consistent with the theory.
基金supported by the National Natural Science Foundation of China(Grant No.61077014)the National Basic Research Program of China(Grant No.2010CB327601)
文摘A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influence of pump intensity on the phase difference between the TE and TM modes is studied. The polarization rotation effect is obtained in the EAM, and a novel all-optical fiber loop buffer is designed.