期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate 被引量:3
1
作者 XING XiuSan Department of Physics, Beijing Institute of Technology, Beijing 100081, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第12期2194-2215,共22页
In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation... In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or another entropy increase rate, obtained a theoretical expression for unifying thermodynamic degradation and self-organizing evolution, and revealed that the entropy diffusion mechanism caused the system to approach to equilibrium. As application, we used these entropy formulas in calculating and discussing some actual physical topics in the nonequilibrium and stationary states. All these derivations and results are unified and rigorous from the new fundamental equation without adding any extra new assumption. 展开更多
关键词 stochastic velocity type’s Langevin equation in 6N dimensional phase space DRIFT-DIFFUSION duality NONEQUILIBRIUM entropy evolution equation entropy diffusion FORMULA for entropy production rate entropy change from internal interaction a
原文传递
流动换热强化的能量传递转换机制及其最小熵产原理 被引量:7
2
作者 卢小平 俞树荣 +2 位作者 余建平 何爱玲 郭丹丹 《化工学报》 EI CAS CSCD 北大核心 2014年第S1期336-339,共4页
在线性非平衡区域,对熵产率方程进行了相位拓展,建立了流动换热熵流变化与体系总熵产之间的关系。结果表明,熵产越小时熵流越大,则换热强度越大。当传热与传质均为自发过程,质量流与热流之间同相位时,两者的相位差越小,流动换热的强度越... 在线性非平衡区域,对熵产率方程进行了相位拓展,建立了流动换热熵流变化与体系总熵产之间的关系。结果表明,熵产越小时熵流越大,则换热强度越大。当传热与传质均为自发过程,质量流与热流之间同相位时,两者的相位差越小,流动换热的强度越大,它反映了两个正熵产率过程间能量传递的场协同机制;当传热与传质分别为非自发及自发过程,质量流与热流之间反相位时,两者的相位差越大,流动换热的强度越大,它反映了正熵产率过程与负熵产率过程间能量转换的热力学耦合机制。质量流与热流之间由同相位到反相位,分别对应着场协同时的能量传递机制及热力学耦合时的能量转换机制,共同反映了体系流动换热时能量传递转换的最小熵产原理。 展开更多
关键词 全相位熵产率方程 场协同 热力学耦合 对流换热 最小熵产原理
下载PDF
热力学耦合的相位描述及其最小耗散原理 被引量:13
3
作者 卢小平 郭丹丹 俞树荣 《甘肃科学学报》 2015年第1期15-17,共3页
对热力学耦合进行相位描述,并对线性非平衡态热力学的熵产率方程进行了相位拓展,建立了蕴含热力学耦合机制的全相位熵产率方程。广义力与广义流之间的相位关系,唯像地决定了热力学过程的性质。当广义力与广义流之间同相位时,为熵产率大... 对热力学耦合进行相位描述,并对线性非平衡态热力学的熵产率方程进行了相位拓展,建立了蕴含热力学耦合机制的全相位熵产率方程。广义力与广义流之间的相位关系,唯像地决定了热力学过程的性质。当广义力与广义流之间同相位时,为熵产率大于0的自发过程;当广义力与广义流反相位时,为熵产率小于0的非自发过程。孤立体系内负熵产率的过程可以在正熵产率过程的驱动下进行。而且当自发过程与非自发过程之间发生热力学耦合时,其交叉唯象系数小于0,两个过程的广义流之间的相位差半个周期,这时整个孤立体系的熵产率最小,即说明满足热力学耦合时体系的耗散率最小。 展开更多
关键词 热力学耦合 相位描述 全相位熵产率方程 最小耗散原理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部