期刊文献+
共找到136篇文章
< 1 2 7 >
每页显示 20 50 100
Hot carrier cooling in lead halide perovskites probed by two-pulse photovoltage correlation spectroscopy
1
作者 Yuqing Huang Chaoyu Guo +9 位作者 Lei Gao Wenna Du Haotian Zheng Da Wu Zhengpu Zhao Chu-Wei Zhang Qin Wang Xin-Feng Liu Qingfeng Yan Ying Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期116-119,共4页
The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are consi... The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology. 展开更多
关键词 two-pulse correlation spectroscopy lead halide perovskites hot carrier cooling ultrafast dynamics
下载PDF
Preparation and promising optoelectronic applications of lead halide perovskite patterned structures:A review 被引量:2
2
作者 Shangui Lan Baojun Pan +5 位作者 Ying Liu Zhixiang Zhang Lijie Zhang Bin Yu Yanjun Fang Peijian Wang 《Carbon Energy》 SCIE EI CAS CSCD 2023年第10期91-115,共25页
Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform f... Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform for fundamental science research and applications.Patterned structures based on lead halide perovskites have much more novel properties compared with their more commonly seen bulk-,micro-,and nano-crystals,such as improvement in antireflection,light-scattering effects,and light absorption,as a result of their adjustability of spatial distributions.However,there are many challenges yet to be resolved in this field,such as insufficient patterned resolution,imperfect crystal quality,complicated preparation process,and so on.To pave the way to solve these problems,we provide a systematic presentation of current methods for fabricating lead halide perovskite patterned structures,including thermal imprint,use of etching films,two-step vapor-phase growth,template-confined solution growth,and seed-assisted growth.Furthermore,the advantages and disadvantages of these methods are elaborated in detail.In addition,thanks to the extraordinary properties of lead halide perovskite patterned structures,a variety of potential applications in optics and optoelectronics of these structures are described.Lastly,we put forward existing challenges and prospects in this exciting field. 展开更多
关键词 fabrication lead halide perovskites optics OPTOELECTRONICS patterned structures photovoltaics
下载PDF
Photodetectors based on inorganic halide perovskites:Materials and devices 被引量:1
3
作者 Ying Li Zhi-Feng Shi +1 位作者 Xin-Jian Li Chong-Xin Shan 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期101-115,共15页
The newly emerging metal halide perovskites have attracted considerable attention due to their exceptional optoelectronic properties. This upsurge was initially driven when the power conversion efficiency of perovskit... The newly emerging metal halide perovskites have attracted considerable attention due to their exceptional optoelectronic properties. This upsurge was initially driven when the power conversion efficiency of perovskite-based photovoltaic devices exceeded 23%. Due to their optoelectronic properties, perovskite materials have also been used in light-emitting diodes, photodetectors, lasers, and memory devices. This study comprehensively discusses the recent progress of allinorganic perovskite-based photodetectors, focusing on their structures, morphologies of their constituent materials, and diverse device architectures that improve the performance metrics of these photodetectors. A brief outlook, highlighting the main existing problems, possible solutions to these problems, and future development directions, is also provided herein. 展开更多
关键词 perovskites all-inorganic PHOTODETECTORS lead-FREE
下载PDF
Solar Cells Based on All-Inorganic Halide Perovskites:Progress and Prospects
4
作者 Ni Chenwei Tie Zuoxiu Jin Zhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期648-655,共8页
The emergence of perovskite solar cells(PSCs)based on all-inorganic metal halide(IMH)has generated enormous interest in the photovoltaic research community,and the power conversion efficiency(PCE)has exceeded13%.Despi... The emergence of perovskite solar cells(PSCs)based on all-inorganic metal halide(IMH)has generated enormous interest in the photovoltaic research community,and the power conversion efficiency(PCE)has exceeded13%.Despite its outstanding performance in thermal stability,PSCs based on IMH still face problems such as the lack of a suitable band gap and the inability to generate large areas.In this review,we will summarize the latest progress of PSCs based on IMH. 展开更多
关键词 perovskite solar cells all-inorganic metal halide thermal stability
下载PDF
Origin of Luminescent Centers and Edge States in Low-Dimensional Lead Halide Perovskites:Controversies,Challenges and Instructive Approaches 被引量:3
5
作者 Jiming Bao Viktor G.Hadjiev 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期109-126,共18页
With only a few deep-level defect states having a high formation energy and dominance of shallow carrier non-trapping defects,the defect-tolerant electronic and optical properties of lead halide perovskites have made ... With only a few deep-level defect states having a high formation energy and dominance of shallow carrier non-trapping defects,the defect-tolerant electronic and optical properties of lead halide perovskites have made them appealing materials for high-efficiency,low-cost,solar cells and light-emitting devices.As such,recent observations of apparently deep-level and highly luminescent states in low-dimensional perovskites have attracted enormous attention as well as intensive debates.The observed green emission in 2D CsPb2Br5 and 0 D Cs4PbBr6 poses an enigma over whether it is originated from intrinsic point defects or simply from highly luminescent CsPbBr3 nanocrystals embedded in the otherwise transparent wide band gap semiconductors.The nature of deep-level edge emission in 2D Ruddlesden–Popper perovskites is also not well understood.In this mini review,the experimental evidences that support the opposing interpretations are analyzed,and challenges and root causes forthe controversy are discussed.Shortcomings in the current density functional theory approaches to modeling of properties and intrinsic point defects in lead halide perovskites are also noted.Selected experimental approaches are suggested to better correlate property with structure of a material and help resolve the controversies.Understanding and identification of the origin of luminescent centers will help design and engineer perovskites for wide device applications. 展开更多
关键词 LOW-DIMENSIONAL perovskites LUMINESCENT CENTERS Edge STATES Cesium lead halides Deep-level STATES Ruddlesden–Popper perovskites
下载PDF
Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr3/MoSe2 被引量:1
6
作者 Le Huang Nengjie Huo +2 位作者 Zhaoqiang Zheng Huafeng Dong Jingbo Li 《Journal of Semiconductors》 EI CAS CSCD 2020年第5期99-104,共6页
The distinguished electronic and optical properties of lead halide perovskites(LHPs)make them good candidates for active layer in optoelectronic devices.Integrating LHPs and two-dimensional(2 D)transition metal dichal... The distinguished electronic and optical properties of lead halide perovskites(LHPs)make them good candidates for active layer in optoelectronic devices.Integrating LHPs and two-dimensional(2 D)transition metal dichalcogenides(TMDs)provides opportunities for achieving increased performance in heterostructured LHPs/TMDs based optoelectronic devices.The electronic structures of LHPs/TMDs heterostructures,such as the band offsets and interfacial interaction,are of fundamental and technological interest.Here CsPbBr3 and MoSe2 are taken as prototypes of LHPs and 2 D TMDs to investigate the band alignment and interfacial coupling between them.Our GGA-PBE and HSE06 calculations reveal an intrinsic type-II band alignment between CsPbBr3 and MoSe2.This type-II band alignment suggests that the performance of CsPbBr3-based photodetectors can be improved by incorporating MoSe2 monolayer.Furthermore,the absence of deep defect states at CsPbBr3/MoSe2 interfaces is also beneficial to the better performance of photodetectors based on CsPbBr3/MoSe2 heterostructure.This work not only offers insights into the improved performance of photodetectors based on LHPs/TMDs heterostructures but it also provides guidelines for designing high-efficiency optoelectronic devices based on LHPs/TMDs heterostructures. 展开更多
关键词 lead halide perovskites transition metal DICHALCOGENIDES PHOTODETECTORS band alignment INTERFACIAL coupling
下载PDF
Achieving 20% photovoltaic efficiency by manganese doped methylammonium lead halide perovskites
7
作者 Liangliang Deng Hanjun Yang +4 位作者 Ruiheng Pan Haomiao Yu Jinpeng Li Ling Xu Kai Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期376-383,共8页
We report a transition metal such as manganese doped methylammonium lead halide perovskite(MA(Pb:Mn)I_(3)) solar cell with an power conversion efficiency(PCE) over 20%. The rational design and fabrication of MA(Pb:Mn)... We report a transition metal such as manganese doped methylammonium lead halide perovskite(MA(Pb:Mn)I_(3)) solar cell with an power conversion efficiency(PCE) over 20%. The rational design and fabrication of MA(Pb:Mn)I3 lead to the enhancements of all the photovoltaic parameters. To incorporate Mn can effectively eliminate the trap-assist and bi-molecular recombination. The photo-absorption ability at shorter wavelengths(i.e., less than 500 nm) and charge carrier lifetime can be elaborated. More importantly, the existence of the Mn^(2+)-I~--Mn^(3+)motif contributes for the double exchange effect, giving rise to the charge/spin transport. By a combination of linearly and circularly polarized photo-excitations, we have explicitly determined the role of intrinsic spin–orbit coupling(SOC) in MA(Pb:Mn)I_(3). More dark states are expected to be available for the photocurrent generation. This study may pave the way for deep understandings of transition metals doped hybrid perovskites for highly efficient solar cell applications. 展开更多
关键词 Transition metals Manganese doped methylammonium lead halide perovskites(MA(Pb:Mn)I_(3)) Double exchange Intrinsic SOC Solar cells
下载PDF
Effectively Inhibit Phase Separation to Improve Efficiency and Stability of All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells
8
作者 Miao He Miao Wu +1 位作者 Duofa Wang Tianjin Zhang 《Journal of Renewable Materials》 SCIE EI 2022年第11期2883-2894,共12页
The advancement in a power conversion efficiency(PCE)to reach 25%,the inorganic perovskites are being explored intensively as promising optoelectronic materials due to their excellent photovoltaic performance,i.e.,the... The advancement in a power conversion efficiency(PCE)to reach 25%,the inorganic perovskites are being explored intensively as promising optoelectronic materials due to their excellent photovoltaic performance,i.e.,thermal stability and efficiency.Lately,the inorganic cesium lead halide perovskite is studied to show enhanced light absorption,however,it suffers from the phase separate into I-rich and Br-rich phase which leads to poor film quality due to difference of electronegativity.Herein,we propose a unique solution of controlling the rate of solvent volatilization followed by gel method to inhibit phase separation effectively to obtain the homogenous and pinhole-free CsPbIBr2 films with high crystalline quality.In this study,an inverted planar device based on a light absorber of CsPbIBr2 is prepared to achieve a power conversion efficiency of 8.8%(maintain a stabilized value of 8%in ambient air conditions).Surprisingly,the optimized cell without encapsulation shows excellent long-term stability,as it maintained 90%initial efficiency over 500 h and controlled storage at around 45%relative humidity and 25℃. 展开更多
关键词 inorganic cesium lead halide perovskite phase separate high crystalline quality long-term stability
下载PDF
Aromatic bromination with hydrogen production on organic‐inorganic hybrid perovskite‐based photocatalysts under visible light irradiation
9
作者 Yanfei Zhang Hong Wang +1 位作者 Yan Liu Can Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1805-1811,共7页
Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hyb... Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hybrid perovskite methylammonium lead bromide(MAPbBr_(3))nanocrystals stabilized in aqueous HBr solution can achieve simultaneous aromatic bromination and hydrogen evolution using HBr as the bromine source under visible light irradiation.By hybridizing MAPbBr_(3) with Pt/Ta_(2)O_(5) and poly(3,4‐ethylenedioxythiophene)polystyrene sulfonate as electron‐and hole‐transporting motifs,aromatic bromides were achieved from aromatic compounds with high yield(up to 99%)and selectivity(up to 99%)with the addition of N,N‐dimethylformamide or its analogs.The mechanistic studies revealed that the bromination proceeds via an electrophilic attack pathway and that HOBr may be the key intermediate in the bromination reaction. 展开更多
关键词 Photocatalysis BROMINATION Hydrogen Organic‐inorganic hybrid perovskite material Methylammonium lead bromide
下载PDF
Prediction and observation of defect-induced room-temperature ferromagnetism in halide perovskites
10
作者 Zhiguo Sun Bo Cai +6 位作者 Xi Chen Wenxian Wei Xiaoming Li Dandan Yang Cuifang Meng Ye Wu Haibo Zeng 《Journal of Semiconductors》 EI CAS CSCD 2020年第12期65-73,74-78,共9页
The possibility to induce a macroscopic magnetic moment in lead halide perovskites(LHPs),combined with their excellent optoelectronic properties,is of fundamental interest and has promising spintronic applications.How... The possibility to induce a macroscopic magnetic moment in lead halide perovskites(LHPs),combined with their excellent optoelectronic properties,is of fundamental interest and has promising spintronic applications.However,these possibilities remain an open question in both theory and experiment.Here,theoretical and experimental studies are performed to explore ferromagnetic states in LHPs originated from lattice defects.First-principle calculations reveal that shallow-level Br vacancies in defective CsPbBr3 can produce spin-splitting states and the coupling between them leads to a ferromagnetic ground state.Experimentally,ferromagnetism at 300 K is observed in room-temperature synthesized CsPbBr3 nanocrystals,but is not observed in hot-injection prepared CsPbBr3 quantum dots and in CsPbBr3 single crystals,highlighting the significance played by vacancy defects.Furthermore,the ferromagnetism in the CsPbBr3 nanocrystals can be enhanced fourfold with Ni2+ion dopants,due to enhancement of the exchange coupling between magnetic polarons.Room-temperature ferromagnetism is also observed in other LHPs,which suggests that vacancy-induced ferromagnetism may be a universal feature of solution-processed LHPs,which is useful for future spintronic devices. 展开更多
关键词 lead halide perovskites magnetic nanocrystals halogen vacancy defects DFT calculations magnetic polarons
下载PDF
New insight into the ultra-long lifetime of excitons in organic-inorganic perovskite: Reverse intersystem crossing
11
作者 Guanghao Meng Yantao Shi +4 位作者 Xiangyuan Wang Wei Wang Shufeng Wang Min Ji Ce Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1496-1500,共5页
Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the orig... Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the origin of ultra-long L is still unclear in nature. In some photoelectric materials, reverse intersystem crossing (RISC) from the triplet to the singlet state can enhance the quantum yield of pho- toluminescence greatly. In this study, our theoretical investigation indicated that the energy difference △E_st between the singlet state and the triplet state of CH_3NH_3Pbl_3 was less than 0.1 eV, which represents one crucial prerequisite for the occurrence of RISC. Meanwhile, the experimental results showed that the photoluminescence lifetime increased with the increasing temperature, a typical feature of RISC. Based on this study, we put forward the hypothesis that the ultra-long lifetime of excitons in organic-inorganic halide perovskite might be caused by the RISC process. This may provide a new insight into the important photophysical properties of such novel photovoltaic materials. 展开更多
关键词 inorganic-organic halide perovskite PHOTOPHYSICS Photoluminescence Reverse intersystem crossing Ultra-long lifetime
下载PDF
ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection 被引量:2
12
作者 Maria Baeva Dmitry Gets +8 位作者 Artem Polushkin Aleksandr Vorobyov Aleksandr Goltaev Vladimir Neplokh Alexey Mozharov Dmitry VKrasnikov Albert GNasibulin Ivan Mukhin Sergey Makarov 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第9期45-58,共14页
Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we deve... Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we develop a perovskite electrochemical cell both for light emission and detection,where the active layer consists of a composite material made of halide perovskite microcrystals,polymer support matrix,and added mobile ions.The perovskite electrochemical cell of CsPbBr3:PEO:LiTFSI composition,emitting light at the wavelength of 523 nm,yields the luminance more than 7000 cd/m2 and electroluminescence efficiency of 4.3 lm/W.The device fabricated on a silicon substrate with transparent single-walled carbon nanotube film as a top contact exhibits 40%lower Joule heating compared to the perovskite optoelectronic devices fabricated on conventional ITO/glass substrates.Moreover,the device operates as a photodetector with a sensitivity up to 0.75 A/W,specific detectivity of 8.56×1011 Jones,and linear dynamic range of 48 dB.The technological potential of such a device is proven by demonstration of 24-pixel indicator display as well as by successful device miniaturization by creation of electroluminescent images with the smallest features less than 50μm. 展开更多
关键词 composite inorganic halide perovskite silicon single walled carbon nanotubes light-emitting electrochemical cell PHOTODETECTOR indicator display
下载PDF
Antimony doped CsPbI_(2)Br for high-stability all-inorganic perovskite solar cells 被引量:3
13
作者 Mengfei Zhu Lina Qin +6 位作者 Yuren Xia Junchuan Liang Yaoda Wang Daocheng Hong Yuxi Tian Zuoxiu Tie Zhong Jin 《Nano Research》 SCIE EI CSCD 2024年第3期1508-1515,共8页
All-inorganic perovskites,adopting cesium(Cs+)cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites,have attracted much attention owing to the excellent thermal ... All-inorganic perovskites,adopting cesium(Cs+)cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites,have attracted much attention owing to the excellent thermal stability.However,all-inorganic iodine-based perovskites generally exhibit poor phase stability in ambient conditions.Herein,we propose an efficient strategy to introduce antimony(Sb^(3+))into the crystalline lattices of CsPbI_(2)Br perovskite,which can effectively regulate the growth of perovskite crystals to obtain a more stable perovskite phase.Due to the much smaller ionic radius and lower electronegativity of trivalent Sb^(3+)than those of Pb^(2+),the Sb^(3+)doping can decrease surface defects and suppress charge recombination,resulting in longer carrier lifetime and negligible hysteresis.As a result,the all-inorganic perovskite solar cells(PSCs)based on 0.25%Sb^(3+)doped CsPbI_(2)Br light absorber and screen-printable nanocarbon counter electrode achieved a power conversion efficiency of 11.06%,which is 16%higher than that of the control devices without Sb^(3+)doping.Moreover,the Sb^(3+)doped all-inorganic PSCs also exhibited greatly improved endurance against heat and moisture.Due to the use of low-cost and easy-to-process nanocarbon counter electrodes,the manufacturing process of the all-inorganic PSCs is very convenient and highly repeatable,and the manufacturing cost can be greatly reduced.This work offers a promising approach to constructing high-stability all-inorganic PSCs by introducing appropriate lattice doping. 展开更多
关键词 all-inorganic perovskite solar cells Sb doped cesium lead halide perovskites foreign B-site ions hole-conductor-free phase stability improvement
原文传递
Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals 被引量:5
14
作者 Andres Granados del Aguila TThu Ha Do +3 位作者 Jun Xing Wen Jie Jee Jacob B.Khurgin Qihua Xiong 《Nano Research》 SCIE EI CAS CSCD 2020年第7期1962-1969,共8页
Up-conversion photoluminescence(UCPL)refers to the elementary process where low-energy photons are converted into high-energy ones via consecutive interactions inside a medium.When additional energy is provided by int... Up-conversion photoluminescence(UCPL)refers to the elementary process where low-energy photons are converted into high-energy ones via consecutive interactions inside a medium.When additional energy is provided by intermnal thermal energy in the form of lttice vibrations(phonons),the process is called phonon-assisted UCPL.Here,we report the exceptionally large phonon-assisted energy gain of up to^8kgT(kg is Boltzmann constant,T is temperature)on all-inorganic lead halide perovskite semiconductor colloidal nanocrystals that goes beyond the maximum capabilty of only harvesting optical phonon modes.By systematic optical study in combination with a statistical probability model,we explained the nontrivial phonon-assisted UCPL process in perovskites nanocrystals,where in addition to the strong electron-phonon(light-matter)coupling,other nonlinear processes such as phonon-phonon(matter-matter)interaction also effectively boost the up-conversion efficiency. 展开更多
关键词 up-conversion photoluminescence PHONONS lead halide perovskite colloidal nanocrystals
原文传递
Lead halide perovskite sensitized WSe_(2) photodiodes with ultrahigh open circuit voltages 被引量:1
15
作者 Sung-Joon Lee Hung-Chieh Cheng +9 位作者 Yiliu Wang Boxuan Zhou Dehui Li Gongming Wang Yuan Liu Jian Guo Hao Wu Dae Joon Kang Yu Huang Xiangfeng Duan 《eLight》 2023年第1期188-197,共10页
Two-dimensional semiconductors(2DSCs)have attracted considerable interests for optoelectronic devices,but are often plagued by the difficulties in tailoring the charge doping type and poor optical absorption due to th... Two-dimensional semiconductors(2DSCs)have attracted considerable interests for optoelectronic devices,but are often plagued by the difficulties in tailoring the charge doping type and poor optical absorption due to their atomically thin geometry.Herein,we report a methylammonium lead iodide perovskite(CH_(3)NH_(3)PbI_(3))/2DSC heterojunction device,in which the electric-field controllable ion migration in the perovskite layer is exploited to induce reversible electron-and hole-doping effects in the underlying monolayer tungsten diselenide(WSe_(2))to form a programmable p-n photodiode.At the same time,the CH_(3)NH_(3)PbI_(3) layer functions as a highly efficient sensitization layer to greatly boost the optical absorption and external quantum efficiency(EQE)of the resulting photodiode.By asymmetrically poling the perovskite layer,gold-contacted CH_(3)NH_(3)PbI_(3)/WSe_(2) devices show a switchable open circuit voltage up to 0.78 V,along with a high EQE of 84.3%.The integration of tunable graphene-contacts further improves the photodiode performance to achieve a highest open circuit voltage of 1.08 V and a maximum EQE of 91.3%,greatly exceeding those achieved previously in 2DSC lateral diodes.Our studies establish a non-invasive approach to switch optoelectronic functions and open up a new avenue toward high-performance reconfigurable optoelectronic devices from 2DSCs. 展开更多
关键词 Electrostatic doping Programmable optoelectronic devices lead halide perovskite Two-dimensional
原文传递
Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics 被引量:3
16
作者 Dewei Ma Yongping Fu +3 位作者 Lianna Dang Jianyuan Zhai Ilia A. Guzei Song Jin 《Nano Research》 SCIE EI CAS CSCD 2017年第6期2117-2129,共13页
Organic-inorganic hybrid perovskites attract considerable attention owing to their applications in high-efficiency solar cells and light emission. Compared with three-dimensional perovskites, two-dimensional (2D) la... Organic-inorganic hybrid perovskites attract considerable attention owing to their applications in high-efficiency solar cells and light emission. Compared with three-dimensional perovskites, two-dimensional (2D) layered hybrid perovskites have a higher exciton binding energy and potentially higher light- emission efficiency. The growth of high-quality crystalline 2D perovskites with a well-defined nanoscale morphology is desirable because they can be suitable building blocks for integrated optoelectronics and (nano)photonics. Herein, we report the facile solution growth of single-crystal microplates of 2D perovskites based on a 2-phenylethylammonium (C6HsCH2CH2NHG PEA) cation, (PEA)2PbX- (X = Br, I), with a well-defined rectangular geometry and nanoscale thickness through a dissolution-recrystallization process. The crystal structures of (PEA)2PbX4 are first confirmed using single-crystal X-ray diffraction. A solution-phase transport-growth process is developed to grow microplates with a typical size of tens of micrometers and thickness of hundreds of nanometers on another clean substrate different from the substrate coated with lead-acetate precursor film. Surface-topography analysis suggests that the formation of the 2D microplates is likely driven by the wedding-cake growth mechanism. Through halide alloying, the photoluminescence emission of (PEA)2Pb(Br, I)4 perovskites with a narrow peak bandwidth is readily tuned from violet (-410 nm) to green (-530 nm). 展开更多
关键词 layered lead-halide perovskite phenylethylammonium lead-halide perovskites microplate nanoplate dissolution-recrystallization photoluminescence
原文传递
Diffusion effect on the decay of time-resolved photoluminescence under low illumination in lead halide perovskites
17
作者 Huang Li Haipeng Di +7 位作者 Xingan Wang Zefeng Ren Ming Lu An-An Liu Xueming Yang Nanlin Wang Yiying Zhao Bohan Li 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第8期115-124,共10页
Time-resolved photoluminescence(TRPL)has been extensively used to measure the carrier lifetime in lead halide perovskites.The TRPL curves of perovskite materials are usually fitted with a multi-exponential function,in... Time-resolved photoluminescence(TRPL)has been extensively used to measure the carrier lifetime in lead halide perovskites.The TRPL curves of perovskite materials are usually fitted with a multi-exponential function,instead of a single exponential one.This was considered to be a result of the surface and the bulk recombination or the additional radiative recombination caused by the high excited carrier density.Here,a new model considering the diffusion and the trap-assisted recombination of carriers is proposed to explain the TRPL curves.The expressions of the TRPL curves and the transient absorption(TA)dynamic curves are theoretically derived,demonstrating that the TRPL curve is an infinite exponential series,regardless of the presence of surface recombination or not.Our newly developed highly sensitive nanosecond TA and TRPL were employed to measure the carrier dynamics of the same sample under low illumination in the linear response region of TA,thereby experimentally verifying our model.These results suggest that the decay of the TRPL is not only a consequence of the carrier recombination but also the carrier diffusion.TRPL cannot provide a direct measurement of the carrier lifetime,whereas TA spectroscopy can.Furthermore,the surface and the bulk recombination can be resolved and the average diffusion coefficient(D)can also be correctly obtained by combining TRPL and TA measurements.We also propose an approximate method for calculating the carrier lifetime and diffusion coefficient of high-quality perovskite films.Our model provides not only a new interpretation of the dynamics of the PL decay but also a deep insight into the carrier dynamics in the nanosecond time scale under working condition of perovskites solar cells. 展开更多
关键词 time-resolved photoluminescence(TRPL) lead halide perovskite carrier diffusion ultrafast carrier dynamics
原文传递
The visible light-triggered nonvolatile memory performances in melamine-decorated <110>-oriented lead halide perovskites: A photo-responsive structural evolution insight
18
作者 Kaiyue Song Panke Zhou +3 位作者 Lulu Zong Zhencong Yang Haohong Li Zhirong Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期526-530,共5页
The exploration of novel photo/thermal-responsive nonvolatile memorizers will be beneficial for energysaving memories.Herein,new<110>-oriented perovskites using single template melamine,i.e.,[(MLAI-H_(2))(PbX_(4... The exploration of novel photo/thermal-responsive nonvolatile memorizers will be beneficial for energysaving memories.Herein,new<110>-oriented perovskites using single template melamine,i.e.,[(MLAI-H_(2))(PbX_(4))]_n(X=Br (α-1),Cl (α-2),MLAI=melamine) have been prepared and their structures upon irradiation of visible light have been investigated.They have been fabricated as nonvolatile memory devices with structures of ITO/[(MLAI-H_(2))(PbX_(4))]_n/PMMA/Ag (device-1:X=Br,device-2:X=Cl),which can exhibit unique visible light-triggered binary nonvolatile memory performances.Interestingly,the silent or working status can be monitored by visible chromisms.Furthermore,the light-triggered binary resistive switching mechanisms of these ITO/[(MLAI-H_(2))(PbX_(4))]_n/PMMA/Ag memory devices have been clarified in terms of EPR,fluorescence,and single-crystal structural analysis.The presence of light-activated traps in<110>-oriented[(MLAI-H_(2))(PbX_(4))]_n perovskites are dominated in the appearance of light-triggered resistive switching behaviors,based on which the inverted internal electrical fields can be established.According to the structural analysis,the more distorted PbX_6octahedra,higher corrugated<110>-oriented perovskite sheets,and more condensed organic-inorganic packing in Br-containing perovskite are beneficial for the stabilization of light-activated traps,which lead to the better resistive switching behavior of device-1.This work can pave a new avenue for the establishment of novel energy-saving nonvolatile memorizers used in aerospace or military industries. 展开更多
关键词 Nonvolatile memorizer Light-triggered memory <110>-Oriented lead halide perovskite Photo-responsive structural evolution Photochromisms
原文传递
Mediating the Local Oxygen‑Bridge Interactions of Oxysalt/Perovskite Interface for Defect Passivation of Perovskite Photovoltaics 被引量:1
19
作者 Ze Qing Lin Hui Jun Lian +5 位作者 Bing Ge Ziren Zhou Haiyang Yuan Yu Hou Shuang Yang Hua Gui Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期266-279,共14页
Passivation,as a classical surface treatment technique,has been widely accepted in start-of-the-art perovskite solar cells(PSCs)that can effectively modulate the electronic and chemical property of defective perovskit... Passivation,as a classical surface treatment technique,has been widely accepted in start-of-the-art perovskite solar cells(PSCs)that can effectively modulate the electronic and chemical property of defective perovskite surface.The discovery of inorganic passivation compounds,such as oxysalts,has largely advanced the efficiency and lifetime of PSCs on account of its favorable electrical property and remarkable inherent stability,but a lack of deep understanding of how its local configuration affects the passivation effectiveness is a huge impediment for future interfacial molecular engineering.Here,we demonstrate the central-atom-dependent-passivation of oxysalt on perovskite surface,in which the central atoms of oxyacid anions dominate the interfacial oxygen-bridge strength.We revealed that the balance of local interactions between the central atoms of oxyacid anions(e.g.,N,C,S,P,Si)and the metal cations on perovskite surface(e.g.,Pb)generally determines the bond formation at oxysalt/perovskite interface,which can be understood by the bond order conservation principle.Silicate with less electronegative Si central atoms provides strong O-Pb motif and improved passivation effect,delivering a champion efficiency of 17.26%for CsPbI2Br solar cells.Our strategy is also universally effective in improving the device performance of several commonly used perovskite compositions. 展开更多
关键词 Solar cell lead halide perovskite PASSIVATION Oxysalt Central atom
下载PDF
Is machine learning redefining the perovskite solar cells?
20
作者 Nishi Parikh Meera Karamta +6 位作者 Neha Yadav Mohammad Mahdi Tavakoli Daniel Prochowicz Seckin Akin Abul Kalam Soumitra Satapathi Pankaj Yadav 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期74-90,I0004,共18页
Development of novel materials with desirable properties remains at the forefront of modern scientific research.Machine learning(ML),a branch of artificial intelligence,has recently emerged as a powerful technology in... Development of novel materials with desirable properties remains at the forefront of modern scientific research.Machine learning(ML),a branch of artificial intelligence,has recently emerged as a powerful technology in optoelectronic devices for the prediction of various properties and rational design of materials.Metal halide perovskites(MHPs)have been at the centre of attraction owing to their outstanding photophysical properties and rapid development in solar cell application.Therefore,the application of ML in the field of MHPs is also getting much attention to optimize the fabrication process and reduce the cost of processing.Here,we comprehensively reviewed different applications of ML in the designing of both MHP absorber layers as well as complete perovskite solar cells(PSCs).At the end,the challenges of ML along with the possible future direction of research are discussed.We believe that this review becomes an indispensable roadmap for optimizing materials composition and predicting design strategies in the field of perovskite technology in the future. 展开更多
关键词 Machine learning Metal halide perovskites perovskite solar cell lead free perovskites
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部