期刊文献+
共找到20,811篇文章
< 1 2 250 >
每页显示 20 50 100
Transient AC Overvoltage Suppression Orientated Reactive Power Control of the Wind Turbine in the LCC-HVDC Sending Grid
1
作者 Bo Pang Xiao Jin +4 位作者 Quanwang Zhang Yi Tang Kai Liao Jianwei Yang Zhengyou He 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期152-161,共10页
High-voltage direct current(HVDC) transmission is a crucial way to solve the reverse distribution of clean energy and loads. The line commutated converter-based HVDC(LCCHVDC) has become a vital structure for HVDC due ... High-voltage direct current(HVDC) transmission is a crucial way to solve the reverse distribution of clean energy and loads. The line commutated converter-based HVDC(LCCHVDC) has become a vital structure for HVDC due to its high technological maturity and economic advantages. During the DC fault of LCC-HVDC, such as commutation failure, the reactive power regulation of the AC grid always lags the DC control process, causing overvoltage in the AC sending grid, which brings off-grid risk to the wind power generation based on power electronic devices. Nevertheless, considering that wind turbine generators have fast and flexible reactive power control capability, optimizing the reactive power control of wind turbines to participate in the transient overvoltage suppression of the sending grid not only improves the operational safety at the equipment level but also enhances the voltage stability of the system. This paper firstly analyses the impact of wind turbine's reactive power on AC transient overvoltage. Then, it proposes an improved voltage-reactive power control strategy, which contains a reactive power control delay compensation and a power command optimization based on the voltage time series prediction. The delay compensation is used to reduce the contribution of the untimely reactive power of wind turbines on transient overvoltage, and the power command optimization enables wind turbines to have the ability to regulate transient overvoltage, leading to the variation of AC voltage, thus suppressing the transient overvoltage. Finally, the effectiveness and feasibility of the proposed method are verified in a ±800kV/5000MW LCC-HVDC sending grid model based on MATLAB/Simulink. 展开更多
关键词 Commutation failure LCC-HVDC Transient overvoltage wind power
下载PDF
Research on entropy weight variation evaluation method for wind power clusters based on dynamic layered sorting
2
作者 Yansong Gao Lifu A +4 位作者 Chenxu Zhao Xiaodong Qin Ri Na An Wang Shangshang Wei 《Global Energy Interconnection》 EI CSCD 2024年第5期653-666,共14页
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators... This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters. 展开更多
关键词 wind power clusters Entropy-weighting method Comprehensive evaluation Dynamic layered sorting
下载PDF
Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty
3
作者 Juan Li Tingting Xu +3 位作者 Yi Gu Chuang Liu Guiping Zhou Guoliang Bian 《Energy Engineering》 EI 2024年第10期2777-2795,共19页
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un... In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit. 展开更多
关键词 High energy load of electrofused magnesium wind energy consumption thermal power unit wind power uncertainty two-layer optimization
下载PDF
Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System
4
作者 Zhongping Liu Enhui Sun +3 位作者 Jiahao Shi Lei Zhang Qi Wang Jiali Dong 《Energy Engineering》 EI 2024年第4期913-932,共20页
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu... There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode. 展开更多
关键词 wind power coal-fired power PV multi-power generation system lithium-iron phosphate energy storage system
下载PDF
Review of the Analysis and Suppression for High-frequency Oscillations of the Grid-connected Wind Power Generation System
5
作者 Bo Pang Qi Si +4 位作者 Pan Jiang Kai Liao Xiaojuan Zhu Jianwei Yang Zhengyou He 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期127-142,共16页
High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is... High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping. 展开更多
关键词 Damping method High-frequency oscillation STABILITY wind power generation
下载PDF
Optimal Scheduling Strategy of Source-Load-Storage Based onWind Power Absorption Benefit
6
作者 Jie Ma Pengcheng Yue +6 位作者 Haozheng Yu Yuqing Zhang Youwen Zhang Cuiping Li Junhui Li Wenwen Qin Yong Guo 《Energy Engineering》 EI 2024年第7期1823-1846,共24页
In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of ... In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of China is limited,resulting in insufficient local wind power consumption capacity.Therefore,this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid’s wind power consumption capacity.The objective of the uppermodel is tominimize the peak-valley difference of the systemload,which ismainly to optimize the system load by using the demand response resources,and to reduce the peak-valley difference of the system load to improve the peak load regulation capacity of the grid.The lower scheduling model is aimed at maximizing the system operation benefit,and the scheduling model is selected based on the rolling schedulingmethod.The load-side schedulingmodel needs to reallocate the absorbed wind power according to the response speed,absorption benefit,and curtailment penalty cost of the two DR dispatching resources.Finally,the measured data of a power grid are simulated by MATLAB,and the results show that:the proposed strategy can improve the power grid’s wind power consumption capacity and get a large wind power consumption benefit. 展开更多
关键词 wind power consumption two-layer optimal demand response rolling scheduling wind curtailment penalty
下载PDF
The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power+Energy Storage Systems
7
作者 Caifeng Wen Boxin Zhang +3 位作者 Yuanjun Dai Wenxin Wang Wanbing Xie Qian Du 《Energy Engineering》 EI 2024年第10期2961-2979,共19页
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e... Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production. 展开更多
关键词 wind power system entropy production system losses power quality indexes battery energy storage
下载PDF
Three-Level Optimal Scheduling and Power Allocation Strategy for Power System ContainingWind-Storage Combined Unit
8
作者 Jingjing Bai Yunpeng Cheng +2 位作者 Shenyun Yao Fan Wu Cheng Chen 《Energy Engineering》 EI 2024年第11期3381-3400,共20页
To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power ... To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis. 展开更多
关键词 wind power cluster energy storage system wind-storage combined unit optimal scheduling power allocation
下载PDF
Primary frequency control considering communication delay for grid-connected offshore wind power systems
9
作者 Xueping Pan Qijie Xu +5 位作者 Tao Xu Jinpeng Guo Xiaorong Sun Yuquan Chen Qiang Li Wei Liang 《Global Energy Interconnection》 EI CSCD 2024年第3期241-253,共13页
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque... Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy. 展开更多
关键词 Offshore wind power Primary frequency control Time delay Padéapproximation Time-delay compensation control
下载PDF
Optimal ConfigurationMethod forMulti-Type Reactive Power Compensation Devices in Regional Power Grid with High Proportion ofWind Power
10
作者 Ying Wang Jie Dang +2 位作者 Cangbi Ding Chenyi Zheng Yi Tang 《Energy Engineering》 EI 2024年第11期3331-3353,共23页
As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wi... As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power(WP).Due to the randomness of WP output,higher requirements are put forward for the voltage stability of each node of the regional power grid,and various reactive power compensation devices(RPCDs)need to be rationally configured to meet the stable operation requirements of the system.This paper proposes an optimal configuration method for multi-type RPCDs in regional power grids with a high proportion of WP.The RPCDs are located according to the proposed static voltage stability index(VSI)and dynamicVSI based on dynamic voltage drop area,and the optimal configuration model of RPCDs is constructed with the lowest construction cost as the objective function to determine the installed capacity of various RPCDs.Finally,the corresponding regional power grid model for intensive access to WFs is constructed on the simulation platform to verify the effectiveness of the proposed method. 展开更多
关键词 wind power reactive power compensation device optimal configuration model voltage stability
下载PDF
A Wind Power Prediction Framework for Distributed Power Grids
11
作者 Bin Chen Ziyang Li +2 位作者 Shipeng Li Qingzhou Zhao Xingdou Liu 《Energy Engineering》 EI 2024年第5期1291-1307,共17页
To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article com... To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods. 展开更多
关键词 wind power prediction distributed power grid WRF mode deep learning variational mode decomposition
下载PDF
A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting
12
作者 Farhan Ullah Xuexia Zhang +2 位作者 Mansoor Khan Muhammad Abid Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2024年第5期3373-3395,共23页
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article... Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions. 展开更多
关键词 Ensemble learning machine learning real-time data analysis stakeholder analysis temporal convolutional network wind power forecasting
下载PDF
A method for cleaning wind power anomaly data by combining image processing with community detection algorithms
13
作者 Qiaoling Yang Kai Chen +2 位作者 Jianzhang Man Jiaheng Duan Zuoqi Jin 《Global Energy Interconnection》 EI CSCD 2024年第3期293-312,共20页
Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of ... Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting. 展开更多
关键词 wind turbine power curve Abnormal data cleaning Community detection Louvain algorithm Mathematical morphology operation
下载PDF
Research on typical operating conditions of hydrogen production system with off-grid wind power considering the characteristics of proton exchange membrane electrolysis cell
14
作者 Weiming Peng Yanhui Xu +4 位作者 Gendi Li Jie Song Guizhi Xu Xiaona Xu Yan Pan 《Global Energy Interconnection》 EI CSCD 2024年第5期642-652,共11页
Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation a... Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs. 展开更多
关键词 wind power fluctuation Off-grid operation Hydrogen production by PEM electrolysis Neural network clustering Typical working conditions
下载PDF
Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis
15
作者 Jing Gao Mingxuan Ji +1 位作者 Hongjiang Wang Zhongxiao Du 《Computers, Materials & Continua》 SCIE EI 2024年第6期5017-5030,共14页
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m... With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method. 展开更多
关键词 Short-term wind power prediction deep hybrid kernel extreme learning machine incremental learning error clustering
下载PDF
Generation of input spectrum for electrolysis stack degradation test applied to wind power PEM hydrogen production
16
作者 Yanhui Xu Guanlin Li +1 位作者 Yuyuan Gui Zhengmao Li 《Global Energy Interconnection》 EI CSCD 2024年第4期462-474,共13页
Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current... Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy. 展开更多
关键词 Hydrogen production by electrolysis of water wind power Proton exchange membrane electrolyzer Gaussian mixture model Cyclic operating condition
下载PDF
Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation
17
作者 Yuanjun Dai Haonan Li Baohua Li 《Energy Engineering》 EI 2024年第6期1607-1636,共30页
This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w... This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect. 展开更多
关键词 Micro wind-hydrogen coupling system ultra-short-term wind power prediction sigmoid-PSO algorithm adaptive roll optimization predictive control strategy
下载PDF
The Short-Term Prediction ofWind Power Based on the Convolutional Graph Attention Deep Neural Network
18
作者 Fan Xiao Xiong Ping +4 位作者 Yeyang Li Yusen Xu Yiqun Kang Dan Liu Nianming Zhang 《Energy Engineering》 EI 2024年第2期359-376,共18页
The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key... The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident. 展开更多
关键词 Format wind power prediction deep neural network graph attention network attention mechanism quantile regression
下载PDF
Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather
19
作者 Hanpeng Kou Tianlong Bu +2 位作者 Leer Mao Yihong Jiao Chunming Liu 《Energy Engineering》 EI 2024年第4期1027-1048,共22页
In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is... In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network. 展开更多
关键词 Decentralised wind power network loss correction siting and capacity determination reactive voltage control two-stage model manta ray foraging optimisation algorithm
下载PDF
Improved AVOA based on LSSVM for wind power prediction
20
作者 ZHANG Zhonglin WEI Fan +1 位作者 YAN Guanghui MA Haiyun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期344-359,共16页
Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the predi... Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology. 展开更多
关键词 African vulture optimization algorithm(AVOA) least squares support vector machine(LSSVM) variational mode decomposition(VMD) multi-objective prediction wind power
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部