期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
关联且项项正相关频繁模式挖掘 被引量:2
1
作者 沈斌 姚敏 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第12期2171-2177,2185,共8页
针对频繁模式和已有的相关模式不能完全去除交叉支持可疑模式和包含负相关商品项的可疑模式的问题,提出了关联且项项正相关频繁模式挖掘的新问题及其解决方案.阐述了一种新颖的all-item-confidence相关兴趣度量,探讨了该度量所具有的合... 针对频繁模式和已有的相关模式不能完全去除交叉支持可疑模式和包含负相关商品项的可疑模式的问题,提出了关联且项项正相关频繁模式挖掘的新问题及其解决方案.阐述了一种新颖的all-item-confidence相关兴趣度量,探讨了该度量所具有的合适的上下界、反单调性等性质.选取all-item-confidence描述模式的项项正相关性,从而有效过滤包含负相关商品项的可疑模式;同时采用all-confidence描述模式的关联性,去除交叉支持可疑模式.进一步给出相关定义,提出两种挖掘算法:ItemCo Mine_AP和ItemCo Mine_CT,并对算法性能、度量减枝效果、实际零售数据集应用效果进行了测试.实验结果表明,两种算法执行性能良好,all-confidence和all-item-confidence对可疑模式有明显的减枝效果,挖掘得到的关联且项项正相关模式具有较好的应用价值. 展开更多
关键词 相关模式 关联且项项正相关频繁模式 all-item-confidence 挖掘算法
下载PDF
Mining item-item and between-set correlated association rules
2
作者 Bin SHEN Min YAO +2 位作者 Li-jun XIE Rong ZHU Yun-ting TANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第2期96-109,共14页
To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rule... To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rules. First, we present three measurements: the association, correlation, and item-set correlation measurements. In the association measurement, the all-confidence measure is used to filter suspicious cross-support patterns, while the all-item-confidence measure is applied in the correlation measurement to eliminate spurious association rules that contain negatively correlated items. Then, we define the item-set correlation measurement and show its corresponding properties. By using this measurement, spurious association rules in which the antecedent and consequent item-sets are negatively correlated can be eliminated. Finally, we propose item-item and between-set correlated association rules and two mining algorithms, I&ISCoMine_AP and I&ISCoMine_CT. Experimental results with synthetic and real retail datasets show that the proposed method is effective and valid. 展开更多
关键词 Item-item and between-set correlated association rules All-confidence all-item-confidence Item-set correlation Mining algorithms Pruning effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部