期刊文献+
共找到34,195篇文章
< 1 2 250 >
每页显示 20 50 100
基于Vision Transformer的虹膜——人脸多特征融合识别研究
1
作者 马滔 陈睿 张博 《中国新技术新产品》 2024年第18期8-10,共3页
为了提高生物特征识别系统的准确性和鲁棒性,本文研究基于计算机视觉的虹膜—人脸多特征融合识别方法。本文对面部图像中虹膜区域进行提取以及预处理,采用对比度增强和归一化操作,加强了特征提取的一致性,提升了图像质量。为了获取丰富... 为了提高生物特征识别系统的准确性和鲁棒性,本文研究基于计算机视觉的虹膜—人脸多特征融合识别方法。本文对面部图像中虹膜区域进行提取以及预处理,采用对比度增强和归一化操作,加强了特征提取的一致性,提升了图像质量。为了获取丰富的深度特征,本文使用Vision Transformer模型对预处理后的虹膜和面部图像进行特征提取。利用多头注意力机制将虹膜和面部的多模态特征信息进行融合,再利用全连接层进行分类识别。试验结果表明,该方法识别性能优秀,识别准确性显著提升。 展开更多
关键词 计算机视觉 vision Transformer 多特征融合 虹膜识别 人脸识别
下载PDF
Dual-Path Vision Transformer用于急性缺血性脑卒中辅助诊断
2
作者 张桃红 郭学强 +4 位作者 郑瀚 罗继昌 王韬 焦力群 唐安莹 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期307-314,共8页
急性缺血性脑卒中是由于脑组织血液供应障碍导致的脑功能障碍,数字减影脑血管造影(DSA)是诊断脑血管疾病的金标准。基于患者的正面和侧面DSA图像,对急性缺血性脑卒中的治疗效果进行分级评估,构建基于Vision Transformer的双路径图像分... 急性缺血性脑卒中是由于脑组织血液供应障碍导致的脑功能障碍,数字减影脑血管造影(DSA)是诊断脑血管疾病的金标准。基于患者的正面和侧面DSA图像,对急性缺血性脑卒中的治疗效果进行分级评估,构建基于Vision Transformer的双路径图像分类智能模型DPVF。为了提高辅助诊断速度,基于EdgeViT的轻量化设计思想进行了模型的构建;为了使模型保持轻量化的同时具有较高的精度,提出空间-通道自注意力模块,促进Transformer模型捕获更全面的特征信息,提高模型的表达能力;此外,对于DPVF的两分支的特征融合,构建交叉注意力模块对两分支输出进行交叉融合,促使模型提取更丰富的特征,从而提高模型表现。实验结果显示DPVF在测试集上的准确率达98.5%,满足实际需求。 展开更多
关键词 急性缺血性脑卒中 视觉Transformer 双分支网络 特征融合
下载PDF
基于Vision Transformer的小麦病害图像识别算法
3
作者 白玉鹏 冯毅琨 +3 位作者 李国厚 赵明富 周浩宇 侯志松 《中国农机化学报》 北大核心 2024年第2期267-274,共8页
小麦白粉病、赤霉病和锈病是危害小麦产量的三大病害。为提高小麦病害图像的识别准确率,构建一种基于Vision Transformer的小麦病害图像识别算法。首先,通过田间拍摄的方式收集包含小麦白粉病、赤霉病和锈病3种病害在内的小麦病害图像,... 小麦白粉病、赤霉病和锈病是危害小麦产量的三大病害。为提高小麦病害图像的识别准确率,构建一种基于Vision Transformer的小麦病害图像识别算法。首先,通过田间拍摄的方式收集包含小麦白粉病、赤霉病和锈病3种病害在内的小麦病害图像,并对原始图像进行预处理,建立小麦病害图像识别数据集;然后,基于改进的Vision Transformer构建小麦病害图像识别算法,分析不同迁移学习方式和数据增强对模型识别效果的影响。试验可知,全参数迁移学习和数据增强能明显提高Vision Transformer模型的收敛速度和识别精度。最后,在相同时间条件下,对比Vision Transformer、AlexNet和VGG16算法在相同数据集上的表现。试验结果表明,Vision Transformer模型对3种小麦病害图像的平均识别准确率为96.81%,相较于AlexNet和VGG16模型识别准确率分别提高6.68%和4.94%。 展开更多
关键词 小麦病害 vision Transformer 迁移学习 图像识别 数据增强
下载PDF
基于Vision Transformer与迁移学习的裤装廓形识别与分类
4
作者 应欣 张宁 申思 《丝绸》 CAS CSCD 北大核心 2024年第11期77-83,共7页
针对裤装廓形识别与分类模型的分类不准确问题,文章采用带有自注意力机制的Vision Transformer模型实现裤装廓形图像的分类,对于图片背景等无关信息对廓形识别的干扰,添加自注意力机制,增强有用特征通道。为防止因裤型样本数据集较少产... 针对裤装廓形识别与分类模型的分类不准确问题,文章采用带有自注意力机制的Vision Transformer模型实现裤装廓形图像的分类,对于图片背景等无关信息对廓形识别的干扰,添加自注意力机制,增强有用特征通道。为防止因裤型样本数据集较少产生过拟合问题,可通过迁移学习方法对阔腿裤、喇叭裤、紧身裤、哈伦裤4种裤装廓形进行训练和验证,将改进的Vision Transformer模型与传统CNN模型进行对比实验,验证模型效果。实验结果表明:使用Vision Transformer模型在4种裤装廓形分类上的分类准确率达到97.72%,与ResNet-50和MobileNetV2模型相比均有提升,可为服装廓形的图像分类识别提供有力支撑,在实际服装领域中有较高的使用价值。 展开更多
关键词 裤装廓形 自注意力机制 vision transformer 迁移学习 图像分类 廓形识别
下载PDF
细粒度图像分类上Vision Transformer的发展综述
5
作者 孙露露 刘建平 +3 位作者 王健 邢嘉璐 张越 王晨阳 《计算机工程与应用》 CSCD 北大核心 2024年第10期30-46,共17页
细粒度图像分类(fine-grained image classification,FGIC)一直是计算机视觉领域中的重要问题。与传统图像分类任务相比,FGIC的挑战在于类间对象极其相似,使任务难度进一步增加。随着深度学习的发展,Vision Transformer(ViT)模型在视觉... 细粒度图像分类(fine-grained image classification,FGIC)一直是计算机视觉领域中的重要问题。与传统图像分类任务相比,FGIC的挑战在于类间对象极其相似,使任务难度进一步增加。随着深度学习的发展,Vision Transformer(ViT)模型在视觉领域掀起热潮,并被引入到FGIC任务中。介绍了FGIC任务所面临的挑战,分析了ViT模型及其特性。主要根据模型结构全面综述了基于ViT的FGIC算法,包括特征提取、特征关系构建、特征注意和特征增强四方面内容,对每种算法进行了总结,并分析了它们的优缺点。通过对不同ViT模型在相同公用数据集上进行模型性能比较,以验证它们在FGIC任务上的有效性。最后指出了目前研究的不足,并提出未来研究方向,以进一步探索ViT在FGIC中的潜力。 展开更多
关键词 细粒度图像分类 vision Transformer 特征提取 特征关系构建 特征注意 特征增强
下载PDF
Collaborative positioning for swarms:A brief survey of vision,LiDAR and wireless sensors based methods 被引量:1
6
作者 Zeyu Li Changhui Jiang +3 位作者 Xiaobo Gu Ying Xu Feng zhou Jianhui Cui 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期475-493,共19页
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo... As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research. 展开更多
关键词 Collaborative positioning vision LIDAR Wireless sensors Sensor fusion
下载PDF
基于Vision Transformer的阿尔茨海默病分类研究
7
作者 许曙博 郑英豪 +3 位作者 秦方博 周超 周劲 陈嘉燕 《微型电脑应用》 2024年第8期4-7,共4页
为了有效地提升对阿尔茨海默病(AD)的磁共振成像(MRI)图像分类准确率,提出一种LC(Layer-Cut)-ViT方法。该方法通过引入Vision Transformer(ViT)的自注意力机制对MRI图像进行层切分,使模型能更好地理解图像的全局信息,同时突出切片间的... 为了有效地提升对阿尔茨海默病(AD)的磁共振成像(MRI)图像分类准确率,提出一种LC(Layer-Cut)-ViT方法。该方法通过引入Vision Transformer(ViT)的自注意力机制对MRI图像进行层切分,使模型能更好地理解图像的全局信息,同时突出切片间的特征关系。此外,通过配准、颅骨分离算法提取MRI图像的脑部组织部分,进一步提升模型的性能。实验结果显示,所提方法对阿尔茨海默病的MRI图像具有较好的分类能力。 展开更多
关键词 阿尔茨海默病 MRI图像分类 vision Transformer LC-ViT
下载PDF
Frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students 被引量:1
8
作者 Jie Cai Wen-Wen Fan +5 位作者 Yun-Hui Zhong Cai-Lan Wen Xiao-Dan Wei Wan-Chen Wei Wan-Yan Xiang Jin-Mao Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期374-379,共6页
AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine visio... AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms. 展开更多
关键词 optometry clinic non-strabismic binocular vision dysfunction college students convergence insufficiency
下载PDF
基于Vision Transformer和迁移学习的家庭领域哭声识别
9
作者 王汝旭 王荣燕 +2 位作者 曾科 杨传德 刘超 《智能计算机与应用》 2024年第6期119-126,共8页
针对SVM等传统机器学习算法准确率低和当前使用CNN处理家庭领域哭声识别在不同婴儿间出现泛化能力差的问题,提出了一种基于Vision Transformer和迁移学习的婴儿哭声音频分类算法。首先,为实现数据集样本的扩增,采用了包括梅尔频谱转换... 针对SVM等传统机器学习算法准确率低和当前使用CNN处理家庭领域哭声识别在不同婴儿间出现泛化能力差的问题,提出了一种基于Vision Transformer和迁移学习的婴儿哭声音频分类算法。首先,为实现数据集样本的扩增,采用了包括梅尔频谱转换和数据增强的数据预处理技术,进而达到了增强模型鲁棒性的目的。而后,在微调后的Vision Transformer模型上进行迁移学习训练,同时,训练过程中利用了LookAhead优化器来不断调整模型参数以避免过拟合,最终实验实现了对婴儿哭声音频的自动分类。实验结果表明,本实验模型相比其他深度学习模型具有更高的精确率和更快的收敛速度,同时还能有效地学习到婴儿哭声中更具区分性的特征。可以在新生儿监护、听力筛查和异常检测等领域中发挥重要作用。 展开更多
关键词 vision Transformer模型 婴儿哭声 迁移学习 梅尔频谱图 LOOKAHEAD
下载PDF
基于改进Vision Transformer网络的农作物病害识别方法 被引量:3
10
作者 王杨 李迎春 +6 位作者 许佳炜 王傲 马唱 宋世佳 谢帆 赵传信 胡明 《小型微型计算机系统》 CSCD 北大核心 2024年第4期887-893,共7页
基于DCNN模型的农作物病害识别方法在实验室环境下识别准确率高,但面对噪声时缺少鲁棒性.为了兼顾农作物病害识别的精度和鲁棒性,本文在标准ViT模型基础上加入增强分块序列化和掩码多头注意力,解决标准ViT模型缺乏局部归纳偏置和视觉特... 基于DCNN模型的农作物病害识别方法在实验室环境下识别准确率高,但面对噪声时缺少鲁棒性.为了兼顾农作物病害识别的精度和鲁棒性,本文在标准ViT模型基础上加入增强分块序列化和掩码多头注意力,解决标准ViT模型缺乏局部归纳偏置和视觉特征序列的自注意力过于关注自身的问题.实验结果表明,本文的EPEMMSA-ViT模型对比标准ViT模型可以更高效的从零学习;当添加预训练权重训练网络时,EPEMMSA-ViT模型在数据增强的PlantVillage番茄子集上能够得到99.63%的分类准确率;在添加椒盐噪声的测试数据集上,对比ResNet50、DenseNet121、MobileNet和ConvNeXt的分类准确率分别提升了6.08%、9.78%、29.78%和12.41%;在添加均值模糊的测试数据集上,对比ResNet50、DenseNet121、MobileNet和ConvNeXt的分类准确率分别提升了18.92%、31.11%、20.37%和19.58%. 展开更多
关键词 农作物病害识别 深度卷积神经网络 视觉Transformer 自注意力 局部归纳偏置
下载PDF
基于Vision Transformer和迁移学习的垃圾图像分类研究 被引量:1
11
作者 郭伟 余璐 宋莉 《河南工程学院学报(自然科学版)》 2024年第1期65-71,共7页
为解决垃圾图像分类中分类准确率低及小样本类别性能差的问题,以生活垃圾图像为研究对象,以正确识别生活垃圾类别为研究目标,利用Vision Transformer模型为分类网络架构,使用迁移学习机制实现该模型在华为云垃圾分类数据集上的训练及分... 为解决垃圾图像分类中分类准确率低及小样本类别性能差的问题,以生活垃圾图像为研究对象,以正确识别生活垃圾类别为研究目标,利用Vision Transformer模型为分类网络架构,使用迁移学习机制实现该模型在华为云垃圾分类数据集上的训练及分类推理。实验结果表明,基于注意力机制的分类模型相较于基于卷积结构的ResNet、DenseNet分类模型具有更高的分类准确率,可达96%,同时测试集的混淆矩阵表明Vision Transformer分类模型在样本不均衡数据集中对于小样本类别也具有较高的准确率,具有实际部署、推理的应用价值。 展开更多
关键词 垃圾图像分类 迁移学习 卷积神经网络 注意力 vision Transformer
下载PDF
基于改进Vision Transformer的道岔故障智能诊断
12
作者 王英琪 李刚 +1 位作者 胡启正 杨勇 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4321-4333,共13页
道岔故障种类繁多,特征复杂,存在检测难、分类难等问题,导致故障排查效率低下,对铁路运输安全构成威胁。Vision Transformer模型在图像分类方面具有较高准确度,但是其处理的是图像块,而不是传统的像素级特征,在某些情况下可能会影响曲... 道岔故障种类繁多,特征复杂,存在检测难、分类难等问题,导致故障排查效率低下,对铁路运输安全构成威胁。Vision Transformer模型在图像分类方面具有较高准确度,但是其处理的是图像块,而不是传统的像素级特征,在某些情况下可能会影响曲线局部信息的获取。针对上述情况,提出一种基于改进Vision Transformer模型的故障曲线分类算法。首先,对典型道岔故障及原因进行梳理分类,指出几种典型的道岔故障;其次,对使用道岔动作电流数据生成的图像尺寸进行调整并根据故障图像特点进行数据增强,使用ResNet网络取代原Vision Transformer模型中的故障图像分块机制进行特征提取,同时采用相对位置编码增强模型的适应性和泛化能力;最后,利用模型的多头自注意力机制,综合全局与局部信息进行分类,并得到分类权重。经过实验验证,本文道岔故障分类识别总体准确率达99.77%,各分类识别的平均精确率达99.78%,与原模型相比,在训练集和验证集上的识别精度分别提升了5.4%和2.4%。为了更好地理解模型的性能,采用Grad-CAM方法将迭代过程可视化,剖析了模型关注区域的变化过程,并在测试集上与VGG-16、DenseNet121等经典分类模型进行性能对比;通过ROC曲线评估分类效果,显示改进的模型取得更优结果。研究结果为道岔故障识别分类提供了新的理论支持,并为未来的研究提供了新的思路和方法。 展开更多
关键词 深度学习 图像分类 道岔故障识别 vision Transformer
下载PDF
基于Vision Transformer-LSTM(ViTL)的多时序遥感影像农作物分类方法
13
作者 张青云 杨辉 +1 位作者 李兴伍 武永闯 《安徽农业大学学报》 CAS CSCD 2024年第5期888-898,共11页
针对当前遥感农作物分类研究中深度学习模型对光谱时间和空间信息特征采样不足,农作物提取仍然存在边界模糊、漏提、误提的问题,提出了一种名为视觉Transformer-长短期记忆递归神经网络(Vision Transformer-long short term memory,ViTL... 针对当前遥感农作物分类研究中深度学习模型对光谱时间和空间信息特征采样不足,农作物提取仍然存在边界模糊、漏提、误提的问题,提出了一种名为视觉Transformer-长短期记忆递归神经网络(Vision Transformer-long short term memory,ViTL)的深度学习模型,ViTL模型集成了双路Vision-Transformer特征提取、时空特征融合和长短期记忆递归神经网络(LSTM)时序分类等3个关键模块,双路Vision-Transformer特征提取模块用于捕获图像的时空特征相关性,一路提取空间分类特征,一路提取时间变化特征;时空特征融合模块用于将多时特征信息进行交叉融合;LSTM时序分类模块捕捉多时序的依赖关系并进行输出分类。综合利用基于多时序卫星影像的遥感技术理论和方法,对黑龙江省齐齐哈尔市讷河市作物信息进行提取,研究结果表明,ViTL模型表现出色,其总体准确率(Overall Accuracy,OA)、平均交并比(Mean Intersection over Union,MIoU)和F1分数分别达到0.8676、0.6987和0.8175,与其他广泛使用的深度学习方法相比,包括三维卷积神经网络(3-D CNN)、二维卷积神经网络(2-D CNN)和长短期记忆递归神经网络(LSTM),ViTL模型的F1分数提高了9%~12%,显示出显著的优越性。ViTL模型克服了面对多时序遥感影像的农作物分类任务中的时间和空间信息特征采样不足问题,为准确、高效地农作物分类提供了新思路。 展开更多
关键词 农作物分类 vision Transformer(ViT) LSTM 深度学习 遥感监测
下载PDF
Artificial hawk-eye camera for foveated, tetrachromatic, and dynamic vision
14
作者 Wenhao Ran Zhuoran Wang Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2024年第9期1-3,共3页
With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply ... With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system. 展开更多
关键词 AWK vision system.
下载PDF
基于Vision Transformer和卷积注入的车辆重识别
15
作者 于洋 马浩伟 +2 位作者 岑世欣 李扬 张梦泉 《河北工业大学学报》 CAS 2024年第4期40-50,共11页
针对车辆重识别中提取特征鲁棒性不高的问题,本文提出基于Vision Transformer的车辆重识别方法。首先,利用注意力机制提出目标导向映射模块,并结合辅助信息嵌入模块,抑制由不同视角、相机拍摄及无效背景引入的噪声。其次,以Vision Trans... 针对车辆重识别中提取特征鲁棒性不高的问题,本文提出基于Vision Transformer的车辆重识别方法。首先,利用注意力机制提出目标导向映射模块,并结合辅助信息嵌入模块,抑制由不同视角、相机拍摄及无效背景引入的噪声。其次,以Vision Transformer远距离建模能力为基础提出通道感知模块,通过并行设计模型能够同时获取图像块之间和图像通道之间的特征,在关注图像块之间关联的基础上,进一步构建通道之间的关联。最后,利用卷积神经网络的局部归纳偏置,将全局特征向量输入到卷积注入模块中进行细化,并与全局特征联合优化,以构建鲁棒性的车辆特征。为了验证提出方法的有效性,在Ve⁃Ri776、VehicleID和VeRi-Wild数据集上分别进行了实验验证。实验结果证明,本文的方法取得了良好的效果。 展开更多
关键词 车辆重识别 vision Transformer 卷积神经网络 目标导向映射 通道感知
下载PDF
基于Vision Transformer的永磁同步电机故障智能诊断
16
作者 蒋亦悦 卞东石 +1 位作者 焦世琪 张晓飞 《微电机》 2024年第10期20-25,共6页
针对电机运行过程中故障信号数据量少的问题,本文提出了一种基于Vision Transformer的永磁同步电机智能故障诊断方法。该方法首先通过格拉姆矩阵(Gram)、相对位置矩阵(RPM)方法将传感器获取的一维时序信号数据转换为二维图像数据,然后... 针对电机运行过程中故障信号数据量少的问题,本文提出了一种基于Vision Transformer的永磁同步电机智能故障诊断方法。该方法首先通过格拉姆矩阵(Gram)、相对位置矩阵(RPM)方法将传感器获取的一维时序信号数据转换为二维图像数据,然后将矩阵图像数据作为ViT-B/16网络的输入进行故障诊断。经过实验验证,该方法能够对永磁同步电机正常、轴承故障、退磁故障等8种状态进行识别和分类,其中使用Gram矩阵图像作为该方法输入的准确率达到99.2%,使用RPM矩阵图像作为输入准确率达到99.6%,均高于AlexNet、VGG16、ResNet等卷积网络的故障分类准确度,证明该方法可有效提高永磁同步电机故障诊断的准确度。 展开更多
关键词 二维图像 vision Transformer 电机故障诊断
下载PDF
基于跨尺度Vision Transformer的深度哈希算法
17
作者 姚佩昀 于炯 +2 位作者 李雪 李梓杨 陈鹏程 《计算机应用研究》 CSCD 北大核心 2024年第11期3477-3483,共7页
为了解决当前深度哈希算法提取跨尺度特征能力不足以及难以拟合数据的全局相似度分布问题,提出了一种基于跨尺度Vision Transformer的深度哈希算法。首先,利用金字塔卷积和跨尺度注意力机制构建了一种多层次编码器,来捕获图像丰富的语... 为了解决当前深度哈希算法提取跨尺度特征能力不足以及难以拟合数据的全局相似度分布问题,提出了一种基于跨尺度Vision Transformer的深度哈希算法。首先,利用金字塔卷积和跨尺度注意力机制构建了一种多层次编码器,来捕获图像丰富的语义信息;其次,提出了一种基于代理的深度哈希算法,该算法为每个类别生成哈希代理,使得哈希码可以学习具有鉴别性的类别特征,从而缩小与同类别哈希代理的距离并拟合数据全局相似性分布;最后,在哈希代理与哈希码之间添加角度边距项,扩大类内相似性和类间差异性,以生成具有高判别性的哈希码。通过在CIFAR-10、ImageNet-100、NUS-Wide、MS COCO上进行的实验结果表明,该算法的平均检索精度比次优方法分别提升4.42%、19.61%、0.35%、15.03%,验证了该算法的有效性。 展开更多
关键词 深度哈希 视觉注意力 哈希代理 跨尺度 图像检索
下载PDF
FPGA and computer-vision-based atom tracking technology for scanning probe microscopy
18
作者 俞风度 刘利 +5 位作者 王肃珂 张新彪 雷乐 黄远志 马瑞松 郇庆 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期76-85,共10页
Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board f... Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering. 展开更多
关键词 atom tracking FPGA computer vision drift measurement
下载PDF
基于改进Vision Transformer的蝴蝶品种分类
19
作者 许翔 蒲智 +1 位作者 鲁文蕊 王亚波 《电脑知识与技术》 2024年第16期1-5,共5页
蝴蝶作为一种品类繁多且相似度极高的生物,具有重要的生态环境感知功能。不同品类蝴蝶对环境变化的敏感程度各不相同,因此在农学与生物学研究方向上对蝴蝶的研究具有十分重要的意义。近年来,计算机视觉技术的飞速发展为快速识别蝴蝶品... 蝴蝶作为一种品类繁多且相似度极高的生物,具有重要的生态环境感知功能。不同品类蝴蝶对环境变化的敏感程度各不相同,因此在农学与生物学研究方向上对蝴蝶的研究具有十分重要的意义。近年来,计算机视觉技术的飞速发展为快速识别蝴蝶品类提供了强有力的技术支持。然而,传统的Vision Transformer模型存在着一些问题,例如缺乏卷积所具有的归纳偏置、局部信息提取能力不足、容易过拟合以及在小数据集上训练缓慢等。针对这些问题,提出了一种基于Vision Transformer改进的蝴蝶分类算法。引入VanillaNet卷积结构,并通过全局注意力机制改进了Class token的更新方式。实验结果显示,在100类蝴蝶数据集上,改进后的Vision Transformer模型的Top-1准确率达到了94.87%,比改进前提升了28.9%。在使用改进的Class token后,算法的Top-1准确率进一步提升至96.64%,相比改进前提升了30.44%。与原网络模型相比,改进后的模型更适用于蝴蝶品种分类任务。 展开更多
关键词 蝴蝶分类 vision Transformer 卷积 Class token VanillaNet 注意力机制
下载PDF
Development and validation of a novel questionnaire regarding vision screening among preschool teachers in Malaysia
20
作者 Shazrina Ariffin Saadah Mohamed Akhir Sumithira Narayanasamy 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期1102-1109,共8页
AIM:To develop and evaluate the validity and reliability of a knowledge,attitude,and practice questionnaire related to vision screening(KAP-VST)among preschool teachers in Malaysia.METHODS:The questionnaire was develo... AIM:To develop and evaluate the validity and reliability of a knowledge,attitude,and practice questionnaire related to vision screening(KAP-VST)among preschool teachers in Malaysia.METHODS:The questionnaire was developed through a literature review and discussions with experts.Content and face validation were conducted by a panel of experts(n=10)and preschool teachers(n=10),respectively.A pilot study was conducted for construct validation(n=161)and test-retest reliability(n=60)of the newly developed questionnaire.RESULTS:Based on the content and face validation,71 items were generated,and 68 items were selected after exploratory factor analysis.The content validity index for items(I-CVI)score ranged from 0.8-1.0,and the content validity index for scale(S-CVI)/Ave was 0.99.Internal consistency was KR^(2)0=0.93 for knowledge,Cronbach’s alpha=0.758 for attitude,and Cronbach’s alpha=0.856 for practice.CONCLUSION:The KAP-VST is a valid and reliable instrument for assessing knowledge,attitude,and practice in relation to vision screening among preschool teachers in Malaysia. 展开更多
关键词 validity RELIABILITY preschool teachers vision screening QUESTIONNAIRE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部