An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod...An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.展开更多
Various designed circuits for multiple-valued all-optical arithmetic are demonstrated. The terahertz-optical-asymmetric-demultiplexer (TOAD) switch is used as the basic structure unit in the proposed circuits due to i...Various designed circuits for multiple-valued all-optical arithmetic are demonstrated. The terahertz-optical-asymmetric-demultiplexer (TOAD) switch is used as the basic structure unit in the proposed circuits due to its compact size, thermal stability, and low power operation. The designs of trinary and quaternary signed-digit numbers based adders are presented using different polarized states of light. These proposed polarization-encoded based adders use much less switches and their speeds are higher than the intensity-encoded counterparts. Further, it will be shown that one of the proposed trinary signed-digit adders is twice as fast as a recently reported modified signed-digit adder.展开更多
An all-optical 2-to-4 decoder unit with the assist of terahertz optical asymmetric demultiplexer (TOAD) is presented. The all-optical 2-to-4 decoder with a set of all-optical switches is designed which can be used to ...An all-optical 2-to-4 decoder unit with the assist of terahertz optical asymmetric demultiplexer (TOAD) is presented. The all-optical 2-to-4 decoder with a set of all-optical switches is designed which can be used to achieve a high-speed central processor unit using optical hardware. The unique output lines can be used for all-optical header processing. We attempt to develop an integrated all-optical circuit which can perform decoding of signal. This scheme is very simple and flexible for performing different logic operation and to design advanced complex logic. Simulated results are confirming the described methods.展开更多
An all-optical 3:8 decoder unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed. The all-optical 3:8 decoder unit with a set of all-optical full-adders and optical exclusive-ORs (XORs), ...An all-optical 3:8 decoder unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed. The all-optical 3:8 decoder unit with a set of all-optical full-adders and optical exclusive-ORs (XORs), can be used to perform a fast central processor unit using optical hardware components. We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform decoding of signal. A theoretical model is presented and verified through numerical simulation. The new method promises both higher processing speed and accuracy. The model can be extended for studying more complex all-optical circuit of enhanced functionality in which decoder is the basic building block. The operation of the proposed circuit is parallel in nature. The impact of the switching energy with small signal gain and variation of extinction ratio and contrast ration with control pulse energy of the switching outcome is explored and assessed by means of numerical simulations.展开更多
For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been dem...For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing.展开更多
We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in...We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in this paper. Based on this model, we investigate the optimized operating parameters of the proposed system by simulating the output intensity of the probe light as functions of the input polarization angle, the phase induced by the polarization controller, and the ori- entation of the polarization beam splitter. The simulated results show that we can obtain a good linear slope and a large linear dynamic range,which is suitable for all-optical sampling. The operating power of the pump light can be less than lmW. The presented all-optical sampling method can potentially operate at a sampling rate up to hundreds GS/s and needs low optical power.展开更多
A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency div...A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).展开更多
A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET lo...A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET logic structure latch, its power supply voltage is lower and the speed is faster. In addition, the negative feedback is used in the buffer circuit to widen its bandwidth. Measurement results show that the chip can work at the data rate of 20Gb/ s. The supply voltage is 1.8V and the current,including the buffer circuit, is 72mA.展开更多
A 10 Gbit/s 1:4 demultiplexer(DEMUX) fabricated in 0. 18 μm CMOS (complementary metal-oxidesemiconductor transistor) technology for optical-fiber-link is presented. The system is constructed in tree-type structu...A 10 Gbit/s 1:4 demultiplexer(DEMUX) fabricated in 0. 18 μm CMOS (complementary metal-oxidesemiconductor transistor) technology for optical-fiber-link is presented. The system is constructed in tree-type structure and it includes a high-speed 1 : 2 DEMUX, two low-speed 1 : 2 DEMUXs, a divider, and input and output buffers for data and dock. To improve the circuit performance and reduce the power consumption, a latch structure with a common-gate topology and a single clock phase is employed in the high-speed 1 : 2 DEMUX and the 5 GHz 1 : 2 on-chip frequency divider, while dynamic CMOS logic is adopted in the low-speed l : 2 DEMUXs. Measured results at 10 Gbit/s by 23^31 -1 pseudo random bit sequences (PRBS) via on-wafer testing indicate that it can work well with a power dissipation of less than 100 mW at 1.8 V supply voltage. The die area of the DEMUX is 0. 65 mm × 0. 75 mm.展开更多
A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a...A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a speed as possible and suppress common mode distortions. This DEMUX is featured for achieving singlestage demultiplexing by using a quarter-rate IQ clock. This method not only reduces the components of the DEMUX but also lowers its power dissipation. The fabricated DEMUX operates error free at 12Gb/s by 231 - 1 pseudorandom bit sequences in on-wafer testing. The chip size is 0. 9mm × 0.9mm and the power dissipation is only 210mW with a single 2.5V supply.展开更多
A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flo...A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flops and output buffers. The D flip-flop employs a dynamic-loading structure and common-gate topology with single clock phase for the bias transistors. The dynamic-loading structure can make the circuit work faster because it decreases the charge/discharge time of the output node, and it consumes lower power because its working current is in a switch mode. In addition, the positive feedback loop, which is made up of a cross-coupled transistor pair in the latch, speeds up the circuit. Measurement results at 20 Gbit/s 2^23 - 1 pseudo random bit sequence (PRBS) via on-wafer testing show that the 1: 2 DEMUX can operate well. The power dissipation is 108 mW with the area of 475μm×578μm.展开更多
A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled ...A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled FET logic (SCFL) to achieve as high as possible speed andsuppress common mode distortions. This DEMUX is featured by constant-delay buffers to generate a4-phase clock and adjust skews of the four channel outputs. The fabricated DEMUX operates error freeat 10 Gbit/s by 2^(31) -1 pseudorandom bit sequences (PRBS) via on-wafer testing. The measured rootmean square (rms) jitter, rising and failing edge of the eye-diagram are 11, 123 and 137 ps,respectively. The chip size is 0.9 mm x 1.2 mm and the power dissipation is 550 mW with a 3. 3 Vsupply.展开更多
Holography, which was invented by Dennis Gabor in 1948, offers an approach to reconstructing both the amplitude and phase information of a three-dimensional (3D) object [1]. Since its invention, the concept of hologra...Holography, which was invented by Dennis Gabor in 1948, offers an approach to reconstructing both the amplitude and phase information of a three-dimensional (3D) object [1]. Since its invention, the concept of holography has been widely used in various fields, such as microscopy [2], interferometry [3], ultrasonography [4], and holographic display [5]. Optical holography can be divided into two steps: recording and reconstruction. A conventional hologram is recorded onto a photosensitive film as the interference between an object beam carrying the 3D object information and a reference beam. Thereafter, the original object wavefront is reconstructed in the 3D image space by illuminating the reference beam on the recorded hologram.展开更多
Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analyse...Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.展开更多
All-optically integrated photoacoustic(PA)and optical coherence tomography(OCT)dualmode imaging technology that could o®er comprehensive pathological information for accurate diagnosis in clinic has gradually bec...All-optically integrated photoacoustic(PA)and optical coherence tomography(OCT)dualmode imaging technology that could o®er comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years.This review refers to the technology aspects of alloptical PA detection and system evolution of optically integrated PA and OCT,including Michelson interferometer dual-mode imaging system,Fabry–Perot(FP)interferometer dualmode imaging system and Mach–Zehnder interferometer dual-mode imaging system.It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.展开更多
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi...The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.展开更多
The Kerr nonlinearity in two-dimensional(2D)nanomaterials is emerging as an appealing and intriguing research area due to their prominent light processing,modulation,and manipulation abilities.In this contribution,2D ...The Kerr nonlinearity in two-dimensional(2D)nanomaterials is emerging as an appealing and intriguing research area due to their prominent light processing,modulation,and manipulation abilities.In this contribution,2D black arsenic-phosphorus(B-AsP)nanosheets(NSs)were applied in nonlinear photonic devices based on spatial self-phase modula-tion(SSPM)method.By applying the Kerr nonlinearity in 2D B-AsP,an all-optical phase-modulated system is proposed to realize the functions of“on”and“off”in all-optical switching.By using the same all-optical phase-modulated system,another optical logic gate is proposed,and the logical“or”function is obtained based on the 2D B-AsP NSs dispersions.Moreover,by using the SSPM method,a 2D B-AsP/SnS_(2) hybrid structure is fabricated,and the result illustrates that the hybrid structure possesses the ability of the unidirectional nonlinear excitation,which helps in obtaining the function of spatial asymmetric light propagation.This function is considered an important prerequisite for the realization of diode functionalization,which is believed to be a factor in important basis for the design of isolators as well.The initial investig-ations indicate that 2D B-AsP is applicable for designing optical logical devices,which can be considered as an import-ant development in all-optical information processing.展开更多
Supercontinuum generation(SCG) and its application on all-optical quantization of all-optical analog-to-digital conversions(AOADCs) at the mid-infrared region in an Al GaAs strip waveguide are investigated numerically...Supercontinuum generation(SCG) and its application on all-optical quantization of all-optical analog-to-digital conversions(AOADCs) at the mid-infrared region in an Al GaAs strip waveguide are investigated numerically. The simulation results show that when the parabolic pulse is input, not only broader and higher-coherence SCG is obtained and a higher effective number of bits(ENOB) can be achieved, compared with the input pulse with hyperbolic-secant and Gaussian shaping. A four-bit quantization resolution is achieved along with a signal-to-noise ratio of 24.02 dB and an ENOB of3.99 bit, and the required input peak power is 760 mW.展开更多
This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution...This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.展开更多
All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation me...All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation method.The as-prepared BQDs showed good structural homogeneity and crystallinity,broadband optical absorption as well as excellent photothermal properties.Femtosecond-resolved transient absorption further revealed the short carrier relaxation time of BQDs.Inspired by the outstanding photothermal properties and ultrafast carrier dynamic of BQDs,we fabricated BQDsbased all-optical modulator.The phase shift with a slope efficiency of 0.032π/m W and response time of 0.97 ms can be achieved.The modulator was used in laser resonance cavity to achieve all-optical actively Q-switched laser operation with control repetition rate.This prototypical BQDs-based all-optical modulator shows a great potential to be applied in all-optical information processing and communication.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274478 and 61775244)the National Key Research and Development Program of China(Grant Nos.2021YFB2800604 and 2021YFB2800302).
文摘An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.
文摘Various designed circuits for multiple-valued all-optical arithmetic are demonstrated. The terahertz-optical-asymmetric-demultiplexer (TOAD) switch is used as the basic structure unit in the proposed circuits due to its compact size, thermal stability, and low power operation. The designs of trinary and quaternary signed-digit numbers based adders are presented using different polarized states of light. These proposed polarization-encoded based adders use much less switches and their speeds are higher than the intensity-encoded counterparts. Further, it will be shown that one of the proposed trinary signed-digit adders is twice as fast as a recently reported modified signed-digit adder.
文摘An all-optical 2-to-4 decoder unit with the assist of terahertz optical asymmetric demultiplexer (TOAD) is presented. The all-optical 2-to-4 decoder with a set of all-optical switches is designed which can be used to achieve a high-speed central processor unit using optical hardware. The unique output lines can be used for all-optical header processing. We attempt to develop an integrated all-optical circuit which can perform decoding of signal. This scheme is very simple and flexible for performing different logic operation and to design advanced complex logic. Simulated results are confirming the described methods.
文摘An all-optical 3:8 decoder unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed. The all-optical 3:8 decoder unit with a set of all-optical full-adders and optical exclusive-ORs (XORs), can be used to perform a fast central processor unit using optical hardware components. We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform decoding of signal. A theoretical model is presented and verified through numerical simulation. The new method promises both higher processing speed and accuracy. The model can be extended for studying more complex all-optical circuit of enhanced functionality in which decoder is the basic building block. The operation of the proposed circuit is parallel in nature. The impact of the switching energy with small signal gain and variation of extinction ratio and contrast ration with control pulse energy of the switching outcome is explored and assessed by means of numerical simulations.
基金Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China(Grant No.2022YFA1404201)the National Natural Science Foundation of China(Grant No.11904255)the Key Research and Development Program of Shanxi Province(International Cooperation)(Grant No.201903D421052).
文摘For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing.
文摘We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in this paper. Based on this model, we investigate the optimized operating parameters of the proposed system by simulating the output intensity of the probe light as functions of the input polarization angle, the phase induced by the polarization controller, and the ori- entation of the polarization beam splitter. The simulated results show that we can obtain a good linear slope and a large linear dynamic range,which is suitable for all-optical sampling. The operating power of the pump light can be less than lmW. The presented all-optical sampling method can potentially operate at a sampling rate up to hundreds GS/s and needs low optical power.
文摘A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).
文摘A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET logic structure latch, its power supply voltage is lower and the speed is faster. In addition, the negative feedback is used in the buffer circuit to widen its bandwidth. Measurement results show that the chip can work at the data rate of 20Gb/ s. The supply voltage is 1.8V and the current,including the buffer circuit, is 72mA.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No.2001AA312010).
文摘A 10 Gbit/s 1:4 demultiplexer(DEMUX) fabricated in 0. 18 μm CMOS (complementary metal-oxidesemiconductor transistor) technology for optical-fiber-link is presented. The system is constructed in tree-type structure and it includes a high-speed 1 : 2 DEMUX, two low-speed 1 : 2 DEMUXs, a divider, and input and output buffers for data and dock. To improve the circuit performance and reduce the power consumption, a latch structure with a common-gate topology and a single clock phase is employed in the high-speed 1 : 2 DEMUX and the 5 GHz 1 : 2 on-chip frequency divider, while dynamic CMOS logic is adopted in the low-speed l : 2 DEMUXs. Measured results at 10 Gbit/s by 23^31 -1 pseudo random bit sequences (PRBS) via on-wafer testing indicate that it can work well with a power dissipation of less than 100 mW at 1.8 V supply voltage. The die area of the DEMUX is 0. 65 mm × 0. 75 mm.
文摘A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a speed as possible and suppress common mode distortions. This DEMUX is featured for achieving singlestage demultiplexing by using a quarter-rate IQ clock. This method not only reduces the components of the DEMUX but also lowers its power dissipation. The fabricated DEMUX operates error free at 12Gb/s by 231 - 1 pseudorandom bit sequences in on-wafer testing. The chip size is 0. 9mm × 0.9mm and the power dissipation is only 210mW with a single 2.5V supply.
文摘A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flops and output buffers. The D flip-flop employs a dynamic-loading structure and common-gate topology with single clock phase for the bias transistors. The dynamic-loading structure can make the circuit work faster because it decreases the charge/discharge time of the output node, and it consumes lower power because its working current is in a switch mode. In addition, the positive feedback loop, which is made up of a cross-coupled transistor pair in the latch, speeds up the circuit. Measurement results at 20 Gbit/s 2^23 - 1 pseudo random bit sequence (PRBS) via on-wafer testing show that the 1: 2 DEMUX can operate well. The power dissipation is 108 mW with the area of 475μm×578μm.
文摘A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled FET logic (SCFL) to achieve as high as possible speed andsuppress common mode distortions. This DEMUX is featured by constant-delay buffers to generate a4-phase clock and adjust skews of the four channel outputs. The fabricated DEMUX operates error freeat 10 Gbit/s by 2^(31) -1 pseudorandom bit sequences (PRBS) via on-wafer testing. The measured rootmean square (rms) jitter, rising and failing edge of the eye-diagram are 11, 123 and 137 ps,respectively. The chip size is 0.9 mm x 1.2 mm and the power dissipation is 550 mW with a 3. 3 Vsupply.
基金support from the Australian Research Council (ARC) through the Discovery Project (DP180102402)support from a scholarship from theChina Scholarship Council (201706190189)financial support from the Humboldt Research Fellowship from the Alexander von Humboldt Foundation
文摘Holography, which was invented by Dennis Gabor in 1948, offers an approach to reconstructing both the amplitude and phase information of a three-dimensional (3D) object [1]. Since its invention, the concept of holography has been widely used in various fields, such as microscopy [2], interferometry [3], ultrasonography [4], and holographic display [5]. Optical holography can be divided into two steps: recording and reconstruction. A conventional hologram is recorded onto a photosensitive film as the interference between an object beam carrying the 3D object information and a reference beam. Thereafter, the original object wavefront is reconstructed in the 3D image space by illuminating the reference beam on the recorded hologram.
文摘Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.
基金the National Natural Science Foundation of China(61627827,61331001,81630046and 91539127)the Science and Technology Planning Project of Guangdong Province,China(2015B020233016,2014B020215003and 2014A020215031)+1 种基金the Distinguished Young Teacher Project in Higher Education of Guangdong,China(YQ2015049)the Science and Technology Youth Talent for Special Project of Guangdong,China(2015TQ01X882).
文摘All-optically integrated photoacoustic(PA)and optical coherence tomography(OCT)dualmode imaging technology that could o®er comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years.This review refers to the technology aspects of alloptical PA detection and system evolution of optically integrated PA and OCT,including Michelson interferometer dual-mode imaging system,Fabry–Perot(FP)interferometer dualmode imaging system and Mach–Zehnder interferometer dual-mode imaging system.It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.
基金financial supports from the National Key Research and Development Program of China(2018YFB2200403)National Natural Sci-ence Foundation of China(NSFC)(61775003,11734001,91950204,11527901,11604378,91850117).
文摘The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.
基金supports from the National Natural Science Foundation of China(NSFC)(61435010 and 21773168)the Science and Technique Planning Project of Guangdong Province(Grant No.2016B050501005)+1 种基金the Science and Technology Innovation Commission of Shenzhen(JCYJ20170302153323978 and JCYJ201704101719588539)the Science and Technology Development Fund(No.007/2017/A1 and132/2017/A3),Ma-cao SAR,China.
文摘The Kerr nonlinearity in two-dimensional(2D)nanomaterials is emerging as an appealing and intriguing research area due to their prominent light processing,modulation,and manipulation abilities.In this contribution,2D black arsenic-phosphorus(B-AsP)nanosheets(NSs)were applied in nonlinear photonic devices based on spatial self-phase modula-tion(SSPM)method.By applying the Kerr nonlinearity in 2D B-AsP,an all-optical phase-modulated system is proposed to realize the functions of“on”and“off”in all-optical switching.By using the same all-optical phase-modulated system,another optical logic gate is proposed,and the logical“or”function is obtained based on the 2D B-AsP NSs dispersions.Moreover,by using the SSPM method,a 2D B-AsP/SnS_(2) hybrid structure is fabricated,and the result illustrates that the hybrid structure possesses the ability of the unidirectional nonlinear excitation,which helps in obtaining the function of spatial asymmetric light propagation.This function is considered an important prerequisite for the realization of diode functionalization,which is believed to be a factor in important basis for the design of isolators as well.The initial investig-ations indicate that 2D B-AsP is applicable for designing optical logical devices,which can be considered as an import-ant development in all-optical information processing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61307109 and 61475023)
文摘Supercontinuum generation(SCG) and its application on all-optical quantization of all-optical analog-to-digital conversions(AOADCs) at the mid-infrared region in an Al GaAs strip waveguide are investigated numerically. The simulation results show that when the parabolic pulse is input, not only broader and higher-coherence SCG is obtained and a higher effective number of bits(ENOB) can be achieved, compared with the input pulse with hyperbolic-secant and Gaussian shaping. A four-bit quantization resolution is achieved along with a signal-to-noise ratio of 24.02 dB and an ENOB of3.99 bit, and the required input peak power is 760 mW.
基金Project supported by the National Natural Science Foundation of China (Grant No 60178025) and the Key Laboratory of 0ptoelectronics Information Technical Science of Ministry of Education, Institute of Modern 0ptics, Nankai University, China.
文摘This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.
基金financial supports from the State Key Research Development Program of China(Grant No.2019YFB2203503)National Natural Science Fund(Grant No.61875138)the support from the Instrumental Analysis Center of Shenzhen University(Xili Campus)。
文摘All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation method.The as-prepared BQDs showed good structural homogeneity and crystallinity,broadband optical absorption as well as excellent photothermal properties.Femtosecond-resolved transient absorption further revealed the short carrier relaxation time of BQDs.Inspired by the outstanding photothermal properties and ultrafast carrier dynamic of BQDs,we fabricated BQDsbased all-optical modulator.The phase shift with a slope efficiency of 0.032π/m W and response time of 0.97 ms can be achieved.The modulator was used in laser resonance cavity to achieve all-optical actively Q-switched laser operation with control repetition rate.This prototypical BQDs-based all-optical modulator shows a great potential to be applied in all-optical information processing and communication.