In order to reduce the risk of non-performing loans, losses, and improve the loan approval efficiency, it is necessary to establish an intelligent loan risk and approval prediction system. A hybrid deep learning model...In order to reduce the risk of non-performing loans, losses, and improve the loan approval efficiency, it is necessary to establish an intelligent loan risk and approval prediction system. A hybrid deep learning model with 1DCNN-attention network and the enhanced preprocessing techniques is proposed for loan approval prediction. Our proposed model consists of the enhanced data preprocessing and stacking of multiple hybrid modules. Initially, the enhanced data preprocessing techniques using a combination of methods such as standardization, SMOTE oversampling, feature construction, recursive feature elimination (RFE), information value (IV) and principal component analysis (PCA), which not only eliminates the effects of data jitter and non-equilibrium, but also removes redundant features while improving the representation of features. Subsequently, a hybrid module that combines a 1DCNN with an attention mechanism is proposed to extract local and global spatio-temporal features. Finally, the comprehensive experiments conducted validate that the proposed model surpasses state-of-the-art baseline models across various performance metrics, including accuracy, precision, recall, F1 score, and AUC. Our proposed model helps to automate the loan approval process and provides scientific guidance to financial institutions for loan risk control.展开更多
The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no at- mospheric disturbances and the slow rotation of the Moon, we can...The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no at- mospheric disturbances and the slow rotation of the Moon, we can make long-term continuous observations of a series of important celestial objects in the near ultra- violet band (245-340 nm), and perform a sky survey of selected areas, which can- not be completed on Earth. We can find characteristic changes in celestial brightness with time by analyzing image data from the MUVT, and deduce the radiation mech- anism and physical properties of these celestial objects after comparing with a phys- ical model. In order to explain the scientific purposes of MUVT, this article analyzes the preprocessing of MUVT image data and makes a preliminary evaluation of data quality. The results demonstrate that the methods used for data collection and prepro- cessing are effective, and the Level 2A and 2B image data satisfy the requirements of follow-up scientific researches.展开更多
Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid appr...Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid approach combining quantum and classic devices is the Variational Quantum Classifier(VQC),which development seems promising.Albeit being largely studied,VQC implementations for“real-world”datasets are still challenging on Noisy Intermediate Scale Quantum devices(NISQ).In this paper we propose a preprocessing pipeline based on Stokes parameters for data mapping.This pipeline enhances the prediction rates when applying VQC techniques,improving the feasibility of solving classification problems using NISQ devices.By including feature selection techniques and geometrical transformations,enhanced quantum state preparation is achieved.Also,a representation based on the Stokes parameters in the PoincaréSphere is possible for visualizing the data.Our results show that by using the proposed techniques we improve the classification score for the incidence of acute comorbid diseases in Type 2 Diabetes Mellitus patients.We used the implemented version of VQC available on IBM’s framework Qiskit,and obtained with two and three qubits an accuracy of 70%and 72%respectively.展开更多
Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing ...Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing and a re kernel clustering method to tackle the letter recognition problem. In order to validate effectiveness and efficiency of proposed method, we introduce re kernel clustering into Kernel Nearest Neighbor classification(KNN), Radial Basis Function Neural Network(RBFNN), and Support Vector Machine(SVM). Furthermore, we compare the difference between re kernel clustering and one time kernel clustering which is denoted as kernel clustering for short. Experimental results validate that re kernel clustering forms fewer and more feasible kernels and attain higher classification accuracy.展开更多
Due to the frequent changes of wind speed and wind direction,the accuracy of wind turbine(WT)power prediction using traditional data preprocessing method is low.This paper proposes a data preprocessing method which co...Due to the frequent changes of wind speed and wind direction,the accuracy of wind turbine(WT)power prediction using traditional data preprocessing method is low.This paper proposes a data preprocessing method which combines POT with DBSCAN(POT-DBSCAN)to improve the prediction efficiency of wind power prediction model.Firstly,according to the data of WT in the normal operation condition,the power prediction model ofWT is established based on the Particle Swarm Optimization(PSO)Arithmetic which is combined with the BP Neural Network(PSO-BP).Secondly,the wind-power data obtained from the supervisory control and data acquisition(SCADA)system is preprocessed by the POT-DBSCAN method.Then,the power prediction of the preprocessed data is carried out by PSO-BP model.Finally,the necessity of preprocessing is verified by the indexes.This case analysis shows that the prediction result of POT-DBSCAN preprocessing is better than that of the Quartile method.Therefore,the accuracy of data and prediction model can be improved by using this method.展开更多
In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to detect and remove noise a...In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to detect and remove noise and outliers, and separate clusters. Our experimental results on two-dimensional datasets and practical datasets show that this algorithm can produce new datasets such that the performance of the clustering algorithm is improved.展开更多
It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting ...It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting and amending anomalous samples was proposed. Taking full advantage of wavelet analysis’ properties of multi-resolution and local analysis, this approach is able to detect and amend anomalous samples effectively. To realize the rapid numeric computation of wavelet translation for a discrete sequence, a modified algorithm based on Newton-Cores formula was also proposed. The experimental result shows that the approach is feasible with good result and good practicality.展开更多
The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these t...The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these types of buildings have minimal consideration in the ongoing energy efficiency applications.This is due to the unpredictability in the electrical consumption of the mosques affecting the stability of the distribution networks.Therefore,this study addresses this issue by developing a framework for a short-term electricity load forecast for a mosque load located in Riyadh,Saudi Arabia.In this study,and by harvesting the load consumption of the mosque and meteorological datasets,the performance of four forecasting algorithms is investigated,namely Artificial Neural Network and Support Vector Regression(SVR)based on three kernel functions:Radial Basis(RB),Polynomial,and Linear.In addition,this research work examines the impact of 13 different combinations of input attributes since selecting the optimal features has a major influence on yielding precise forecasting outcomes.For the mosque load,the(SVR-RB)with eleven features appeared to be the best forecasting model with the lowest forecasting errors metrics giving RMSE,nRMSE,MAE,and nMAE values of 4.207 kW,2.522%,2.938 kW,and 1.761%,respectively.展开更多
In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state wh...In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state when the bridge is in construction.Among them,how to assess the safety is one of the challenges.As the continuous monitoring over a long-term period can increase the reliability of the assessment,so,based on a large number of monitored strain data collected from the structural health monitoring system(SHMS)during construction,a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory.At the same time,the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed.This method can provide basis and direction for the internal force control of this type bridge in construction process.So,it can reduce the bridge safety and quality accidents in construction stages.展开更多
Artificial intelligence(AI)relies on data and algorithms.State-of-the-art(SOTA)AI smart algorithms have been developed to improve the performance of AI-oriented structures.However,model-centric approaches are limited ...Artificial intelligence(AI)relies on data and algorithms.State-of-the-art(SOTA)AI smart algorithms have been developed to improve the performance of AI-oriented structures.However,model-centric approaches are limited by the absence of high-quality data.Data-centric AI is an emerging approach for solving machine learning(ML)problems.It is a collection of various data manipulation techniques that allow ML practitioners to systematically improve the quality of the data used in an ML pipeline.However,data-centric AI approaches are not well documented.Researchers have conducted various experiments without a clear set of guidelines.This survey highlights six major data-centric AI aspects that researchers are already using to intentionally or unintentionally improve the quality of AI systems.These include big data quality assessment,data preprocessing,transfer learning,semi-supervised learning,machine learning operations(MLOps),and the effect of adding more data.In addition,it highlights recent data-centric techniques adopted by ML practitioners.We addressed how adding data might harm datasets and how HoloClean can be used to restore and clean them.Finally,we discuss the causes of technical debt in AI.Technical debt builds up when software design and implementation decisions run into“or outright collide with”business goals and timelines.This survey lays the groundwork for future data-centric AI discussions by summarizing various data-centric approaches.展开更多
Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been wi...Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been widely used in various biomedical applications such as arrhythmia detection,disease-specific detection,mortality prediction,and biometric recognition.In recent years,ECG-related studies have been carried out using a variety of publicly available datasets,with many differences in the datasets used,data preprocessing methods,targeted challenges,and modeling and analysis techniques.Here we systematically summarize and analyze the ECGbased automatic analysis methods and applications.Specifically,we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes.Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications.Finally,we elucidated some of the challenges in ECG analysis and provided suggestions for further research.展开更多
taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control depende...taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control dependence, the detecting method of the earth drill’s working state is introduced. Multi sensor data fusion is done with the aid of BP neural network in Matlab. The data to be interfused are pre processed and the program of simulation and “point checking” is given.展开更多
One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques t...One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.展开更多
The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pr...The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- sequencing count data to a continuous variable or continue to work with count data. For each data type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis of data distribution and structure, are a discussion worth. In this review, open questions regarding RNA-sequencing data nature are discussed and highlighted, indicating important future research topics in statistics that should be addressed for a better analysis of already available and new appearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed data is presented. This comparison indicates that transforming RNA-seq count data seems appropriate, at least for differential expression detection.展开更多
文摘In order to reduce the risk of non-performing loans, losses, and improve the loan approval efficiency, it is necessary to establish an intelligent loan risk and approval prediction system. A hybrid deep learning model with 1DCNN-attention network and the enhanced preprocessing techniques is proposed for loan approval prediction. Our proposed model consists of the enhanced data preprocessing and stacking of multiple hybrid modules. Initially, the enhanced data preprocessing techniques using a combination of methods such as standardization, SMOTE oversampling, feature construction, recursive feature elimination (RFE), information value (IV) and principal component analysis (PCA), which not only eliminates the effects of data jitter and non-equilibrium, but also removes redundant features while improving the representation of features. Subsequently, a hybrid module that combines a 1DCNN with an attention mechanism is proposed to extract local and global spatio-temporal features. Finally, the comprehensive experiments conducted validate that the proposed model surpasses state-of-the-art baseline models across various performance metrics, including accuracy, precision, recall, F1 score, and AUC. Our proposed model helps to automate the loan approval process and provides scientific guidance to financial institutions for loan risk control.
文摘The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no at- mospheric disturbances and the slow rotation of the Moon, we can make long-term continuous observations of a series of important celestial objects in the near ultra- violet band (245-340 nm), and perform a sky survey of selected areas, which can- not be completed on Earth. We can find characteristic changes in celestial brightness with time by analyzing image data from the MUVT, and deduce the radiation mech- anism and physical properties of these celestial objects after comparing with a phys- ical model. In order to explain the scientific purposes of MUVT, this article analyzes the preprocessing of MUVT image data and makes a preliminary evaluation of data quality. The results demonstrate that the methods used for data collection and prepro- cessing are effective, and the Level 2A and 2B image data satisfy the requirements of follow-up scientific researches.
基金funded by eVIDA Research group IT-905-16 from Basque Government.
文摘Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid approach combining quantum and classic devices is the Variational Quantum Classifier(VQC),which development seems promising.Albeit being largely studied,VQC implementations for“real-world”datasets are still challenging on Noisy Intermediate Scale Quantum devices(NISQ).In this paper we propose a preprocessing pipeline based on Stokes parameters for data mapping.This pipeline enhances the prediction rates when applying VQC techniques,improving the feasibility of solving classification problems using NISQ devices.By including feature selection techniques and geometrical transformations,enhanced quantum state preparation is achieved.Also,a representation based on the Stokes parameters in the PoincaréSphere is possible for visualizing the data.Our results show that by using the proposed techniques we improve the classification score for the incidence of acute comorbid diseases in Type 2 Diabetes Mellitus patients.We used the implemented version of VQC available on IBM’s framework Qiskit,and obtained with two and three qubits an accuracy of 70%and 72%respectively.
基金Supported by the National Science Foundation(No.IIS-9988642)the Multidisciplinary Research Program
文摘Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing and a re kernel clustering method to tackle the letter recognition problem. In order to validate effectiveness and efficiency of proposed method, we introduce re kernel clustering into Kernel Nearest Neighbor classification(KNN), Radial Basis Function Neural Network(RBFNN), and Support Vector Machine(SVM). Furthermore, we compare the difference between re kernel clustering and one time kernel clustering which is denoted as kernel clustering for short. Experimental results validate that re kernel clustering forms fewer and more feasible kernels and attain higher classification accuracy.
基金National Natural Science Foundation of China(Nos.51875199 and 51905165)Hunan Natural Science Fund Project(2019JJ50186)the Ke7y Research and Development Program of Hunan Province(No.2018GK2073).
文摘Due to the frequent changes of wind speed and wind direction,the accuracy of wind turbine(WT)power prediction using traditional data preprocessing method is low.This paper proposes a data preprocessing method which combines POT with DBSCAN(POT-DBSCAN)to improve the prediction efficiency of wind power prediction model.Firstly,according to the data of WT in the normal operation condition,the power prediction model ofWT is established based on the Particle Swarm Optimization(PSO)Arithmetic which is combined with the BP Neural Network(PSO-BP).Secondly,the wind-power data obtained from the supervisory control and data acquisition(SCADA)system is preprocessed by the POT-DBSCAN method.Then,the power prediction of the preprocessed data is carried out by PSO-BP model.Finally,the necessity of preprocessing is verified by the indexes.This case analysis shows that the prediction result of POT-DBSCAN preprocessing is better than that of the Quartile method.Therefore,the accuracy of data and prediction model can be improved by using this method.
文摘In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to detect and remove noise and outliers, and separate clusters. Our experimental results on two-dimensional datasets and practical datasets show that this algorithm can produce new datasets such that the performance of the clustering algorithm is improved.
基金Project(50374079) supported by the National Natural Science Foundation of China
文摘It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting and amending anomalous samples was proposed. Taking full advantage of wavelet analysis’ properties of multi-resolution and local analysis, this approach is able to detect and amend anomalous samples effectively. To realize the rapid numeric computation of wavelet translation for a discrete sequence, a modified algorithm based on Newton-Cores formula was also proposed. The experimental result shows that the approach is feasible with good result and good practicality.
基金The author extends his appreciation to the Deputyship for Research&Innovation,Ministry of Education and Qassim University,Saudi Arabia for funding this research work through the Project Number(QU-IF-4-3-3-30013).
文摘The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these types of buildings have minimal consideration in the ongoing energy efficiency applications.This is due to the unpredictability in the electrical consumption of the mosques affecting the stability of the distribution networks.Therefore,this study addresses this issue by developing a framework for a short-term electricity load forecast for a mosque load located in Riyadh,Saudi Arabia.In this study,and by harvesting the load consumption of the mosque and meteorological datasets,the performance of four forecasting algorithms is investigated,namely Artificial Neural Network and Support Vector Regression(SVR)based on three kernel functions:Radial Basis(RB),Polynomial,and Linear.In addition,this research work examines the impact of 13 different combinations of input attributes since selecting the optimal features has a major influence on yielding precise forecasting outcomes.For the mosque load,the(SVR-RB)with eleven features appeared to be the best forecasting model with the lowest forecasting errors metrics giving RMSE,nRMSE,MAE,and nMAE values of 4.207 kW,2.522%,2.938 kW,and 1.761%,respectively.
文摘In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state when the bridge is in construction.Among them,how to assess the safety is one of the challenges.As the continuous monitoring over a long-term period can increase the reliability of the assessment,so,based on a large number of monitored strain data collected from the structural health monitoring system(SHMS)during construction,a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory.At the same time,the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed.This method can provide basis and direction for the internal force control of this type bridge in construction process.So,it can reduce the bridge safety and quality accidents in construction stages.
文摘Artificial intelligence(AI)relies on data and algorithms.State-of-the-art(SOTA)AI smart algorithms have been developed to improve the performance of AI-oriented structures.However,model-centric approaches are limited by the absence of high-quality data.Data-centric AI is an emerging approach for solving machine learning(ML)problems.It is a collection of various data manipulation techniques that allow ML practitioners to systematically improve the quality of the data used in an ML pipeline.However,data-centric AI approaches are not well documented.Researchers have conducted various experiments without a clear set of guidelines.This survey highlights six major data-centric AI aspects that researchers are already using to intentionally or unintentionally improve the quality of AI systems.These include big data quality assessment,data preprocessing,transfer learning,semi-supervised learning,machine learning operations(MLOps),and the effect of adding more data.In addition,it highlights recent data-centric techniques adopted by ML practitioners.We addressed how adding data might harm datasets and how HoloClean can be used to restore and clean them.Finally,we discuss the causes of technical debt in AI.Technical debt builds up when software design and implementation decisions run into“or outright collide with”business goals and timelines.This survey lays the groundwork for future data-centric AI discussions by summarizing various data-centric approaches.
基金Supported by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(U1909208)the Science and Technology Major Project of Changsha(kh2202004)the Changsha Municipal Natural Science Foundation(kq2202106).
文摘Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been widely used in various biomedical applications such as arrhythmia detection,disease-specific detection,mortality prediction,and biometric recognition.In recent years,ECG-related studies have been carried out using a variety of publicly available datasets,with many differences in the datasets used,data preprocessing methods,targeted challenges,and modeling and analysis techniques.Here we systematically summarize and analyze the ECGbased automatic analysis methods and applications.Specifically,we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes.Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications.Finally,we elucidated some of the challenges in ECG analysis and provided suggestions for further research.
文摘taking the bucket of multi function earth drill as an example, combining with the conception of multi sensor integration and data fusion, adopting the terrene column chart and digging torque formula as control dependence, the detecting method of the earth drill’s working state is introduced. Multi sensor data fusion is done with the aid of BP neural network in Matlab. The data to be interfused are pre processed and the program of simulation and “point checking” is given.
基金support from Taif University Researchers supporting Project Number(TURSP-2020/215),Taif University,Taif,Saudi Arabia.
文摘One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.
文摘The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- sequencing count data to a continuous variable or continue to work with count data. For each data type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis of data distribution and structure, are a discussion worth. In this review, open questions regarding RNA-sequencing data nature are discussed and highlighted, indicating important future research topics in statistics that should be addressed for a better analysis of already available and new appearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed data is presented. This comparison indicates that transforming RNA-seq count data seems appropriate, at least for differential expression detection.