An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove ...An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove before welding, and then adjust itself posture to the desired status preparing for welding, namely, it is a process that the robot autonomously aligns itself to the center of welding seam. Firstly, the configuration of welding mobile robot with the function of auto-searching weld line is introduced, then the algorithm and implementation of auto-searching weld line are presented on the basis of kinematics model of the robot, at last trajectory planning among auto-searching weld line is investigated in detail. The experiment result shows that the developed welding mobile robot can successfully implement the task of auto-searching weld line before welding, tracking error precision can be controlled to approximate ±1.5 mm, and satisfy the requirement of practical welding project.展开更多
The welding fixtures are the most important devices for an auto body welding assembly line. The current special fixtures used by many automotive manufactures are only fit for one or several specific welding processes,...The welding fixtures are the most important devices for an auto body welding assembly line. The current special fixtures used by many automotive manufactures are only fit for one or several specific welding processes, and the dimensional problem in the circle due to several variation sources accumulation has no adjustment. The active error compensating welding fixture system for auto body is designed and manufactured. The detecting model, coordinate transformation model, and adjusting model based on auto body coordinate system are presented. The dowel pin modular design is adopted in the structure of the fixture to suit different workpieces with some similar characteristics. The online detection and adaptive control system using eddy current sensors and adaptive adjusting devices is analyzed. Three kinds of the left rear wheel covers SGM60 are selected to test workpieces of the developed system, and the active error compensating experiments are performed in the lab for many times. Test results show the validity of mechanism reconfigurations, on-line detections and error compensations of the developed welding fixture.展开更多
The development of welding robots suitable for specially unstructured working enviroments has been become an important development direction of industrial robot application because large-scale welding structures have ...The development of welding robots suitable for specially unstructured working enviroments has been become an important development direction of industrial robot application because large-scale welding structures have been used more and more widely in modern industry. In this paper, an intelligent mobile robot for welding of ship deck with the function of autosearching weld line was presented. A wheeled motion mechanism and a cross adjustment slider are used for the welding robot body. A sensing system based on laser-PSD (position sensitive detector) displacement sensor was developed to obtain two dimensional deviation signals during seam tracking. A full-digital control system based on DSP and CPLD has also been realized to implement complex and high-performance control algorithms. Furthermore, the system has still the function of auto-searching weld line according to the characteristics information of weld groove and adjusting posture itself to the desired status preparing for welding. The experiment of auto-searching welding line shows that the robot has high tracing accuracy, and can satisfy the requirement of practical welding project.展开更多
Commercial A7020-T6 plates in the overaged state were subjected to friction stir welding with four different tool rotational speeds of 500, 710, 1000, and 1400 r/min and a single traverse feed rate of 40 mm/min. The r...Commercial A7020-T6 plates in the overaged state were subjected to friction stir welding with four different tool rotational speeds of 500, 710, 1000, and 1400 r/min and a single traverse feed rate of 40 mm/min. The resultant changes in the welding heat input, microstructure, and the mechanical properties of the joints were investigated. The changes were related to the processes of growth, dissolution, and re-formation of precipitates. The precipitate evolution was examined by differential scanning calorimetry, and the microstructural analysis was conducted using optical, scanning, and transmission electron microscopes. The results showed that the grain size in the stirred zone(SZ) decreased substantially compared with the base metal, but increased with tool rotational speed because of the rise in temperature. We found that the width of the heat-affected zone increased with tool rotational speed. The hardness and the tensile strength in the SZ increased with increasing heat input compared with the base metal in the overaged condition. This recovery in mechanical properties of the joints can be attributed to the dissolution and re-formation of precipitates in the SZ and the thermomechanically affected zone. This process is referred to as an "auto-aging treatment."展开更多
基金This project is supported by Program of International Science and Technology Cooperation(No.2004 DFA02400).
文摘An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove before welding, and then adjust itself posture to the desired status preparing for welding, namely, it is a process that the robot autonomously aligns itself to the center of welding seam. Firstly, the configuration of welding mobile robot with the function of auto-searching weld line is introduced, then the algorithm and implementation of auto-searching weld line are presented on the basis of kinematics model of the robot, at last trajectory planning among auto-searching weld line is investigated in detail. The experiment result shows that the developed welding mobile robot can successfully implement the task of auto-searching weld line before welding, tracking error precision can be controlled to approximate ±1.5 mm, and satisfy the requirement of practical welding project.
基金Shanghai Leading Academic Discipline Project,China(No.B602)Patent Second Development Project of Science and Technology Commission of Shanghai Municipality,China(No.05dz52038)
文摘The welding fixtures are the most important devices for an auto body welding assembly line. The current special fixtures used by many automotive manufactures are only fit for one or several specific welding processes, and the dimensional problem in the circle due to several variation sources accumulation has no adjustment. The active error compensating welding fixture system for auto body is designed and manufactured. The detecting model, coordinate transformation model, and adjusting model based on auto body coordinate system are presented. The dowel pin modular design is adopted in the structure of the fixture to suit different workpieces with some similar characteristics. The online detection and adaptive control system using eddy current sensors and adaptive adjusting devices is analyzed. Three kinds of the left rear wheel covers SGM60 are selected to test workpieces of the developed system, and the active error compensating experiments are performed in the lab for many times. Test results show the validity of mechanism reconfigurations, on-line detections and error compensations of the developed welding fixture.
文摘The development of welding robots suitable for specially unstructured working enviroments has been become an important development direction of industrial robot application because large-scale welding structures have been used more and more widely in modern industry. In this paper, an intelligent mobile robot for welding of ship deck with the function of autosearching weld line was presented. A wheeled motion mechanism and a cross adjustment slider are used for the welding robot body. A sensing system based on laser-PSD (position sensitive detector) displacement sensor was developed to obtain two dimensional deviation signals during seam tracking. A full-digital control system based on DSP and CPLD has also been realized to implement complex and high-performance control algorithms. Furthermore, the system has still the function of auto-searching weld line according to the characteristics information of weld groove and adjusting posture itself to the desired status preparing for welding. The experiment of auto-searching welding line shows that the robot has high tracing accuracy, and can satisfy the requirement of practical welding project.
基金financial support provided by Shahid Chamran University of Ahvaz, Iran
文摘Commercial A7020-T6 plates in the overaged state were subjected to friction stir welding with four different tool rotational speeds of 500, 710, 1000, and 1400 r/min and a single traverse feed rate of 40 mm/min. The resultant changes in the welding heat input, microstructure, and the mechanical properties of the joints were investigated. The changes were related to the processes of growth, dissolution, and re-formation of precipitates. The precipitate evolution was examined by differential scanning calorimetry, and the microstructural analysis was conducted using optical, scanning, and transmission electron microscopes. The results showed that the grain size in the stirred zone(SZ) decreased substantially compared with the base metal, but increased with tool rotational speed because of the rise in temperature. We found that the width of the heat-affected zone increased with tool rotational speed. The hardness and the tensile strength in the SZ increased with increasing heat input compared with the base metal in the overaged condition. This recovery in mechanical properties of the joints can be attributed to the dissolution and re-formation of precipitates in the SZ and the thermomechanically affected zone. This process is referred to as an "auto-aging treatment."