期刊文献+
共找到18,257篇文章
< 1 2 250 >
每页显示 20 50 100
In situ formed LiF-Li_(3)N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries 被引量:1
1
作者 Ming Wu Mengqi Li +5 位作者 Yuming Jin Xinshuang Chang Xiaolei Zhao Zhi Gu Gaozhan Liu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期272-278,共7页
Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid ele... Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid electrolytes in all-solid-state batteries with lithium anode is restricted by the side reactions at lithium/electrolytes interfaces and the growth of lithium dendrite caused by nonuniform lithium deposition.Herein,a homogeneous LiF-Li_(3)N composite protective layer is in situ formed via a manipulated reaction of pentafluorobenzamide with Li metal.The LiF-Li_(3)N layer with both high interfacial energy and interfacial adhesion energy can synergistically suppress side reactions and inhibit the growth of lithium dendrite,achieving uniform deposition of lithium.The critical current densities of Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl are increased to 3.25 and 1.25 mA cm^(-2)with Li@LiF-Li_(3)N layer,which are almost triple and twice as those of Li-symmetric cells in the absence of protection layer,respectively.Moreover,the Li@LiF-Li_(3)N/Li10GeP2S12/Li@LiF-Li_(3)N cell can stably cycle for 9000 h at 0.1 mA cm^(-2)under 0.1 mA h cm^(-2),and Li@LiF-Li_(3)N/Li_(6)PS_(5)Cl/Li@LiF-Li_(3)N cell achieves stable Li plating/stripping for 8000 h at 0.1 mA cm^(-2)under10 m A h cm^(-2).The improved dynamic stability of lithium plating/stripping in Li@LiF-Li_(3)N/Li_(10)GeP_(2)S_(12)or Li_(6)PS_(5)Cl interfaces is proved by three-electrode cells.As a result,LiCoO_(2)/electrolytes/Li@LiF-Li_(3)N batteries with Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl exhibit remarkable cycling stability of 500 cycles with capacity retentions of 93.5%and 89.2%at 1 C,respectively. 展开更多
关键词 LiF-Li_(3)N Sulfide solid electrolytes Interface modification High interface energy all-solid-state batteries
下载PDF
Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries
2
作者 Qingyue Han Suqing Wang +2 位作者 Wenhan Kong Bing Ji Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期257-263,共7页
By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic... By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃. 展开更多
关键词 Electrolytes POLYMERS Graphitic carbon nitride nanosheets Composites Room temperature all-solid-state battery
下载PDF
Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries
3
作者 Sung Won Hwang Dae-Ki Hong 《Computers, Materials & Continua》 SCIE EI 2023年第1期55-66,共12页
The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices.However,the lithium structure severely limits ba... The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices.However,the lithium structure severely limits battery life causes safety concerns due to the growth of lithium(Li)dendrites during rapid charge/discharge cycles.Solid electrolytes,which are used in highdensity energy storage devices and avoid the instability of liquid electrolytes,can be a promising alternative for next-generation batteries.Nevertheless,poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations.In this study,through the application of a low-dimensional graphene quantum dot(GQD)layer structure,stable operation characteristics were demonstrated based on Li^(+)ion conductivity and excellent electrochemical performance.Moreover,the device based on the modified graphene quantum dots(GQDs)in solid state exhibited retention properties of 95.3%for 100 cycles at 0.5 C and room temperature(RT).Transmission electronmicroscopy analysis was performed to elucidate the Li^(+)ion action mechanism in the modified GQD/electrolyte heterostructure.The low-dimensional structure of theGQD-based solid electrolyte has provided an important strategy for stably-scalable solid-state lithium battery applications at room temperature.It was demonstrated that lithiated graphene quantum dots(Li-GQDs)inhibit the growth of Li dendrites by regulating the modified Li^(+)ion flux during charge/discharge cycling at current densities of 2.2–5.5 mA cm,acting as a modified Li diffusion heterointerface.A full Li GQDbased device was fabricated to demonstrate the practicality of the modified Li structure using the Li–GQD hetero-interface.This study indicates that the low-dimensional carbon structure in Li–GQDs can be an effective approach for stabilization of solid-state Li matrix architecture. 展开更多
关键词 SOLID-STATE lithium batteries composite electrolyte quantum dot GRAPHENE
下载PDF
Three-in-one fire-retardant poly(phosphate)-based fast ion-conductor for all-solid-state lithium batteries
4
作者 Jiaying Xie Sibo Qiao +5 位作者 Yuyang Wang Jiefei Sui Lixia Bao He Zhou Tianshi Li Jiliang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期324-334,I0008,共12页
The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes ... The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes regarded as the main cause of battery fire.Herein,a series of solid-state polyphosphate oligomers(SPPO)as a three-in-one electrolyte that integrated the roles of lithium salt,dissociation matrix,and flame retardant were synthesized.The well-designed SPPO electrolytes showed an optimal ionic conductivity of 5.5×10^(-4)S cm-1at 30℃,an acceptable electrochemical window up to 4.0 V vs.Li/Li+,and lithium ion transference number of 0.547.Stable Li-ion stripping/plating behavior for 500 h of charge-discharge cycles without internal short-circuit in a Li|SPPO|Li cell was confirmed,together with outstanding interface compatibility between the SPPO electrolyte and lithium foil.The optimal Li|SPPO|LiFePO4cell presented good reversible discharge capacity of 149.4 mA h g-1at 0.1 C and Coulombic efficiency of 96.4%after 120 cycles.More importantly,the prepared SPPO cannot be ignited by the lighter fire and show a limited-oxygen-index value as high as 35.5%,indicating splendid nonflammable nature.The SPPO could be a promising candidate as a three-in-one solid-state electrolyte for the improved safety of rechargeable lithium batteries. 展开更多
关键词 Three-in-one Poly(phosphate) Organic fast ion-conductor Solid-state polymer electrolyte Flame-retardant Secondary lithium batteries
下载PDF
All-solid-state lithium batteries with inorganic solid electrolytes:Review of fundamental science 被引量:9
5
作者 姚霞银 黄冰心 +5 位作者 尹景云 彭刚 黄祯 高超 刘登 许晓雄 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期212-225,共14页
The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabric... The scientific basis of all-solid-state lithium batteries with inorganic solid electrolytes is reviewed briefly, touching upon solid electrolytes, electrode materials, electrolyte/electrode interface phenomena, fabrication, and evaluation. The challenges and prospects are outlined as well. 展开更多
关键词 all-solid-state lithium batteries inorganic solid electrolytes interface phenomena rechargeablelithium batteries
下载PDF
Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film 被引量:1
6
作者 Jingguang Yi Dan Zhou +3 位作者 Yuhao Liang Hong Liu Haifang Ni Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期17-24,共8页
All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer ... All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer and lithium dendrites formed at the electrolyte/Li anode interface hinder the realization of high-performance ASSLBs.Herein,a novel membrane consisting of Li_(6)PS_(5) Cl(LPSCl),poly(ethylene oxide)(PEO) and Li-salt(LiTFSI) was prepared as sulfide-based composite solid electrolyte(LPSCl-PEO3-LiTFSI)(LPSCl:PEO=97:3 wt/wt;EO:Li=8:1 mol/mol),which delivers high ionic conductivity(1.1 × 10^(-3) S cm^(-1)) and wide electrochemical window(4.9 V vs.Li^(+)/Li) at 25 ℃.In addition,an ex-situ artificial solid electrolyte interphase(SEI) film enriched with LiF and Li3 N was designed as a protective layer on Li anode(Li(SEI)) to suppress the growth of lithium dendrites.Benefiting from the synergy of sulfide-based composite solid electrolyte and ex-situ artificial SEI,cells of S-CNTs/LPSCI-PEO3-LiTFSI/Li(SEI) and Al_(2)O_(3)@LiNi_(0.5)Co_(0.3)Mn_(0.2)O_(2)/LPSCl-PEO3-LiTFSI/Li(SEI) are assembled and both exhibit high initial discharge capacity of 1221.1 mAh g^(-1)(135.8 mAh g^(-1)) and enhanced cycling stability with 81.6% capacity retention over 200 cycles at 0.05 C(89.2% over 100 cycles at 0.1 C).This work provides a new insight into the synergy of composite solid electrolyte and artificial SEI for achieving high-performance ASSLBs. 展开更多
关键词 all-solid-state lithium batteries HIGH-PERFORMANCE Composite solid electrolyte Ionic conductivity Artificial SEI Cycling stability
下载PDF
Manipulating interfacial stability of LiNi0.5Co0.3Mn0.2O2 cathode with sulfide electrolyte by nanosized LLTO coating to achieve high-performance all-solid-state lithium batteries
7
作者 Jingguang Yi Pingge He +3 位作者 Hong Liu Haifang Ni Zhiming Bai Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期202-209,I0007,共9页
All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high ener... All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high energy density and high safety.However,they usually suffer poor cathode/electrolyte interfacial stability,severely limiting their practical applications.In this work,a core-shell cathode with uniformly nanosized Li0.5La0.5TiO3(LLTO) electrolyte coating on LiNi0.5Co0.3Mn0.2O2(NCM532) is designed to improve the cathode/electrolyte interface stability.Nanosized LLTO coating layer not only significantly boosts interfacial migration of lithium ions,but also efficiently alleviates space-charge layer and inhibits the electrochemical decomposition of electrolyte.As a result,the assembled ASSLBs with high mass loading(9 mg cm-2)LLTO coated NCM532(LLTO@NCM532) cathode exhibit high initial capacity(135 mAh g^(-1)) and excellent cycling performance with high capacity retention(80% after 200 cycles) at 0.1 C and 25℃.This nanosized LLTO coating layer design provides a facile and effective strategy for constructing high performance ASSLBs with superior interfacial stability. 展开更多
关键词 all-solid-state lithium batteries Sulfide electrolytes LiNi0.5Co0.3Mn0.2O2 Nanosized LLTO coating Interface
下载PDF
Synthesis and electrochemical performance of (100-x)Li7P3S11-xLi2OHBr composite solid electrolyte for all-solid-state lithium batteries 被引量:2
8
作者 Su-Yeon Jung Rajesh Rajagopal Kwang-Sun Ryu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期307-316,I0011,共11页
Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes cau... Li7P3S11solid electrolytes with high lithium-ion conductivity are promising candidates for use in all-solidstate lithium batteries.However,this electrolyte’s poor interfacial compatibility with lithium electrodes causes unstable cyclability.In this study,in order to address this problem,(100-x)Li7P3S11-xLi2OHBr(x=0,2,5,10,20,30,40,and 50)electrolytes are prepared by a high energy ball-milling technique and heat-treatment process.The resulting(100-x)Li7P3S11-xLi2OHBr(x=2,5,10,20,30,40,and 50)electrolytes provide improved electrochemical performance with good cycling stability and a wide electrochemical window of up to 10 V(vs.Li/Li+).Moreover,these electrolytes have high ionic conductivity of 10-4–10-5S/cm at room temperature.Particularly,the 90Li7P3S11-10Li2OHBr electrolyte displays the highest conductivity of 4.4×10-4S/cm at room temperature as well as improved cyclability.Moreover,90Li7P3S11-10Li2OHBr shows decreased interfacial resistance between the solid electrolyte and cathode electrode,which was revealed by Electrochemical Impedance Spectroscopy(EIS)analysis.The initial discharge capacity of 90Li7P3S11-10Li2OHBr was found to be 135 m Ah/g when used in a In|solid electrolyte|Li(Ni0.6Co0.2Mn0.2)O2 all-solid-state lithium battery(ASSLB).Thus,we can conclude the addition of Li2OHBr into the Li7P3S11results in enhanced electrochemical properties. 展开更多
关键词 all-solid-state lithium battery Solid electrolyte Solid sulfide electrolyte Li2OHBr ANTIPEROVSKITE
下载PDF
Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries 被引量:10
9
作者 Liansheng Li Yuanfu Deng Guohua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期154-177,共24页
Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at a... Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at ambient temperature. Inorganic solid electrolytes(ISEs), garnet-type Li7La3Zr2O12 and its derivatives(LLZO-based) in particular, possess high ionic conductivity at room temperature, wide electrochemical stability window, large Li+transference number as well as good stability against Li metal anode.Nevertheless, lithium dendrites growth, interfacial contact issue and brittle nature of LLZO-based ceramic electrolytes prevent their practical applications. In response to these shortcomings, LLZO-based/polymer solid composite electrolytes(SCEs), taking complementary advantages of two kinds of electrolytes, and thus simultaneously improving the electrode wettability, ionic conductivity and mechanical strength, have been made to develop high-performance SCEs in recent years. Herein, the intrinsic properties and research progress of LLZO-based/polymer SCEs, including LLZO-based/PEO SCEs(LLZO-based/PEO SCEs with uniform dispersion of LLZO-based fillers and LLZO-based/PEO layered SCEs) and LLZO-based/novel polymers SCEs, are summarized. Besides, comprehensive updates on their applications in solid-state batteries are also presented. Finally, challenges and perspectives of LLZO-based/polymer SCEs for advanced allsolid-state lithium batteries(ASSLBs) are suggested. This review paper aims to provide systematic research progress of LLZO-based/polymer SCEs, to allow for more efficient and target-oriented research on improving LLZO-based/polymer SCEs. 展开更多
关键词 Solid polymer electrolyte Garnet-type electrolyte Solid composite electrolyte all-solid-state battery
下载PDF
Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries 被引量:3
10
作者 Shiming Su Jiabin Ma +5 位作者 Liang Zhao Kui Lin Qidong Li Shasha Lv Feiyu Kang Yan-Bing He 《Carbon Energy》 SCIE CAS 2021年第6期866-894,共29页
Security risks of flammability and explosion represent major problems with the use of conventional lithium rechargeable batteries using a liquid electrolyte.The application of solid-state electrolytes could effectivel... Security risks of flammability and explosion represent major problems with the use of conventional lithium rechargeable batteries using a liquid electrolyte.The application of solid-state electrolytes could effectively help to avoid these safety concerns.However,integrating the solid-state electrolytes into the all-solid-state lithium batteries is still a huge challenge mainly due to the high interfacial resistance present in the entire battery,especially at the interface between the cathode and the solid-state electrolyte pellet and the interfaces inside the cathode.Herein,recent progress made from investigations of cathode/solid-state electrolyte interfacial behaviors including the contact problem,the interlayer diffusion issue,the space-charge layer effect,and electrochemical compatibility is presented according to the classification of oxide-,sulfide-,and polymer-based solid-state electrolytes.We also propose strategies for the construction of ideal next-generation cathode/solid-state electrolyte interfaces with high room-temperature ionic conductivity,stable interfacial contact during long cycling,free formation of the space-charge region,and good compatibility with high-voltage cathodes. 展开更多
关键词 cathode configuration design INTERFACE lithium battery solid-state electrolyte
下载PDF
Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries 被引量:2
11
作者 Yu Li Dechao Zhang +5 位作者 Xijun Xu Zhuosen Wang Zhengbo Liu Jiadong Shen Jun Liu Min Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期32-60,共29页
All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electroly... All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development. 展开更多
关键词 all-solid-state batteries Composite cathodes Sulfide solid electrolytes INTERFACE
下载PDF
A panoramic view of Li_(7)P_(3)S_(11) solid electrolytes synthesis, structural aspects and practical challenges for all-solid-state lithium batteries 被引量:1
12
作者 Muhammad Khurram Tufail Niaz Ahmad +4 位作者 Le Yang Lei Zhou Muhammad Adnan Naseer Renjie Chen Wen Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期16-36,共21页
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,wor... The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries(ASSLBs).Because of their advantages in safety,working temperature,high energy density,and packaging,ASSLBs can develop an ideal energy storage system for modern electric vehicles(EVs).A solid electrolyte(SE)model must have an economical synthesis approach,exhibit electrochemical and chemical stability,high ionic conductivity,and low interfacial resistance.Owing to its highest conductivity of 17 mS·cm^(-1),and deformability,the sulfide-based Li_(7)P_(3)S_(11) solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs.Herein,we present a current glimpse of the progress of synthetic procedures,structural aspects,and ionic conductivity improvement strategies.Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques.The chemical stability of Li_(7)P_(3)S_(11) could be enhanced via oxide doping,and hard and soft acid/base(HSAB)concepts are also discussed.The issues to be undertaken for designing the ideal solid electrolytes,interfacial challenges,and high energy density have been discoursed.This review aims to provide a bird’s eye view of the recent development of Li_(7)P_(3)S_(11)-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density allsolid-state lithium batteries. 展开更多
关键词 Li_(7)P_(3)S_(11)solid electrolyte 30Li_(2)S-70P_(2)S_(5)glass ceramics Chemical stability Electrolyte/electrode interphase High energy density all-solid-state lithium batteries
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries
13
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
Novel Zr-doped β-Li_(3)PS_(4) solid electrolyte for all-solid-state lithium batteries with a combined experimental and computational approach
14
作者 Junbo Zhang Guoxi Zhu +6 位作者 Han Li Jiangwei Ju Jianwei Gu Renzhuang Xu Sumin Jin Jianqiu Zhou Bingbing Chen 《Nano Research》 SCIE EI CSCD 2023年第2期3516-3523,共8页
All-solid-state lithium batteries(ASSLBs)are promising for safety and high-energy-density large-scale energy storage.In this contribution,we propose a Li_(3–4x)Zr_(x)PS_(4)(LZPS)by Zr-dopedβ-Li_(3)PS_(4)(LPS)as a no... All-solid-state lithium batteries(ASSLBs)are promising for safety and high-energy-density large-scale energy storage.In this contribution,we propose a Li_(3–4x)Zr_(x)PS_(4)(LZPS)by Zr-dopedβ-Li_(3)PS_(4)(LPS)as a novel solid electrolyte(SE)for ASSLBs based on experimental and simulation methods.The structure,electronic property,mechanical property,and ionic transport properties of LZPS(x=0,0.03,0.06,and 0.1)are investigated with first-principles calculations.Meanwhile,LZPS is prepared by solid states reaction method.By combining experimental analysis and first-principles calculations,it is confirmed that a small amount of Zr4+can be successfully doped into the framework ofβ-LPS composites without significantly compromising structural integrity.When the Zr^(4+)concentration is x=0.03,the doped material Li_(2.88)Zr_(0.03)PS_(4)exhibits the highest ionic conductivity(5.1×10^(−4)S·cm^(−1))at 30℃,and the Li-ion migration energy barrier is the lowest.The Li_(2.88)Zr_(0.03)PS_(4)SE has obtained the best mechanical properties,the good ductility,and shear deformation resistance,which can better maintain the structural stability of the battery.In addition,the Li/Li symmetrical cell is assembled,which shows excellent electrochemical stability of electrolyte against lithium.The constructed all-solid-state batteries(LiCoO_(2)-Li_(6)PS_(5)Cl|Li_(2.88)Zr_(0.03)PS_(4)|Li-In)delivers an initial discharge capacity of 130.4 mAh·g^(−1)at 0.2 C and a capacity retention of 85.1%after 100 cycles at room temperature.This study provides a promising electrolyte for the application of ASSLBs with high ionic conductivity and excellent stability against lithium. 展开更多
关键词 all-solid-state lithium batteries first-principles calculations high ionic conductivity interface stability
原文传递
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries
15
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li 《Nano Materials Science》 EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 Solid-state electrolyte(SSE) all-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
下载PDF
Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries:A Review 被引量:3
16
作者 Hongmei Liang Li Wang +4 位作者 Aiping Wang Youzhi Song Yanzhou Wu Yang Yang Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期266-297,共32页
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el... Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs. 展开更多
关键词 POLYMER Inorganic composite electrolytes all-solid-state lithium metal batteries FILLERS Ionic conductivity High voltage
下载PDF
Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries 被引量:3
17
作者 Yu-Long Liao Jiang-Kui Hu +9 位作者 Zhong-Heng Fu Chen-Zi Zhao Yang Lu Shuai Li Shi-Jie Yang Shuo Sun Xi-Long Wang Jia Liu Jia-Qi Huang Hong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期458-465,I0011,共9页
All-solid-state lithium metal batteries(ASSLMBs)are considered as one of the ultimate goals for the development of energy storage systems due to their high energy density and high safety.However,the mismatching of int... All-solid-state lithium metal batteries(ASSLMBs)are considered as one of the ultimate goals for the development of energy storage systems due to their high energy density and high safety.However,the mismatching of interface transport kinetics as well as interfacial instability induces the growth of lithium dendrite and thus,leads to severe degradation of battery electrochemical performances.Herein,an integrated interface configuration(IIC)consisting of in-situ generated Li I interphase and Li-Ag alloy anode is proposed through in-situ interface chemistry.The IIC is capable of not only regulating charge transport kinetics but also synchronously stabilizing the lithium/electrolyte interface,thereby achieving uniform lithium platting.Therefore,Li||Li symmetric cells with IIC achieve a critical current density of up to 1.6 mA cm^(-2)and achieve stable cycling over 1600 hours at a high current density of 0.5 mA cm^(-2).Moreover,a high discharge capacity of 140.1 mA h g-1at 0.1 C is also obtained for the Li(Ni_(0.6)Co_(0.2)Mn_(0.2))O_(2)(NCM622)full battery with a capacity retention of 65.6%after 300 cycles.This work provides an effective method to synergistically regulate the interface transport kinetics and inhibit lithium dendrite growth for high-performance ASSLMBs. 展开更多
关键词 all-solid-state lithium battery Sulfide solid electrolyte Interface chemistry lithium dendrite
下载PDF
All-Solid-State Thin-Film Lithium-Sulfur Batteries 被引量:3
18
作者 Renming Deng Bingyuan Ke +5 位作者 Yonghui Xie Shoulin Cheng Congcong Zhang Hong Zhang Bingan Lu Xinghui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期326-338,共13页
Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Th... Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries. 展开更多
关键词 all-solid-state thin-film batteries Li-S batteries Vertical graphene nanosheets lithium phosphorous oxynitride Li2S
下载PDF
Sulfide-Based All-Solid-State Lithium-Sulfur Batteries:Challenges and Perspectives 被引量:3
19
作者 Xinxin Zhu Liguang Wang +2 位作者 Zhengyu Bai Jun Lu Tianpin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期376-386,共11页
Lithium-sulfur batteries with liquid electrolytes have been obstructed by severe shuttle effects and intrinsic safety concerns.Introducing inorganic solid-state electrolytes into lithium-sulfur systems is believed as ... Lithium-sulfur batteries with liquid electrolytes have been obstructed by severe shuttle effects and intrinsic safety concerns.Introducing inorganic solid-state electrolytes into lithium-sulfur systems is believed as an effective approach to eliminate these issues without sacrificing the high-energy density,which determines sulfidebased all-solid-state lithium-sulfur batteries.However,the lack of design principles for high-performance composite sulfur cathodes limits their further application.The sulfur cathode regulation should take several factors including the intrinsic insulation of sulfur,well-designed conductive networks,integrated sulfur-electrolyte interfaces,and porous structure for volume expansion,and the correlation between these factors into account.Here,we summarize the challenges of regulating composite sulfur cathodes with respect to ionic/electronic diffusions and put forward the corresponding solutions for obtaining stable positive electrodes.In the last section,we also outlook the future research pathways of architecture sulfur cathode to guide the develop high-performance all-solid-state lithium-sulfur batteries. 展开更多
关键词 all-solid-state lithium-sulfur battery Sulfur cathode Triple-phase interfaces Electrolyte decomposition Volume change
下载PDF
Solid polymer electrolytes in all-solid-state lithium metal batteries:From microstructures to properties 被引量:2
20
作者 Zongxi Lin Ouwei Sheng +7 位作者 Xiaohan Cai Dan Duan Ke Yue Jianwei Nai Yao Wang Tiefeng Liu Xinyong Tao Yujing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期358-378,I0009,共22页
All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic con... All-solid-state lithium(Li)metal batteries(ASSLMBs)are considered one of the most promising secondary batteries due to their high theoretical capacity and high safety performance.However,low room-temperature ionic conductivity and poor interfacial stability are two key factors affecting the practical application of ASSLMBs,and our understanding of the mechanisms behind these key problems from microscopic perspective is still limited.In this review,the mechanisms and advanced characterization techniques of ASSLMBs are summarized to correlate the microstructures and properties.Firstly,we summarize the challenges faced by solid polymer electrolytes(SPEs)in ASSLMBs,such as the low roomtemperature ionic conductivity and the poor interfacial stability.Secondly,several typical improvement methods of polymer ASSLMBs are discussed,including composite SPEs,ultra-thin SPEs,SPEs surface modification and Li anode surface modification.Finally,we conclude the characterizations for correlating the microstructures and the properties of SPEs,with emphasis on the use of emerging advanced techniques(e.g.,cryo-transmission electron microscopy)for in-depth analyzing ASSLMBs.The influence of the microstructures on the properties is very important.Until now,it has been difficult for us to understand the microstructures of batteries.However,some recent studies have demonstrated that we have a better understanding of the microstructures of batteries.Then we suggest that in situ characterization,nondestructive characterization and sub-angstrom resolution are the key technologies to help us further understand the batteries'microstructures and promote the development of batteries.And potential investigations to understand the microstructures evolution and the batteries behaviors are also prospected to expect further reasonable theoretical guidance for the design of ASSLMBs with ideal performance. 展开更多
关键词 lithium metal batteries Solid polymer electrolytes MICROSTRUCTURES PROPERTIES
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部