The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array ...The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.展开更多
The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then gre...The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then grew in different directions through movement of grain boundaries into the ferrite phase. Subsequently, the adjacent austenite grains impinged against each other during the α→γtransformation. After the α→γ transformation, austenite grains coarsened via the coalescence of small grains and via boundary migration between grains. The growth process of austenite grains was a continuous process during heating, isothermal holding, and cooling in simulated thermal cycling. Abundant finely dispersed nanoscale TiN particles in a steel specimen containing 0.012wt% Ti effectively retarded the grain boundary migration, which resulted in refined austenite grains. When the Ti concentration in the steel was increased, the number of TiN particles de- creased and their size coarsened. The big particles were not effective in pinning the austenite grain boundary movement and resulted in coarse austenite grains.展开更多
The hot ductility of V-N and V-Nb microalloyed steels was investigated on a Gleeble-1500 thermomechanical simulator, and the results were compared with those of V and Nb microalloyed steels. A ductility trough is foun...The hot ductility of V-N and V-Nb microalloyed steels was investigated on a Gleeble-1500 thermomechanical simulator, and the results were compared with those of V and Nb microalloyed steels. A ductility trough is found in both the steels in the temperature range of 700 to 1050℃. Compared to the V steel, the V-N steel has a wider and deeper ductility trough with the increase of N content, due to the in- creased precipitation of V(C, N) in the steel. Above 930℃, when 0.047wt% V is added to the 0.028wt% Nb-containing steel, the ductility becomes worse, owing to the rise of the onset dynamic recrystallization temperature. However, the ductility gets better at 800 to 930℃ be- cause of the coarsening of precipitates in austenite. With the improvement in ductility, the fracture mechanism is changed from intergranular to high ductile fracture in the temperature range of 800 to 1050℃.展开更多
During the past thirty years, two generations of low alloy steels(ferrite/pearlite followed by bainite/martensite) have been developed and widely used in structural applications. The third-generation of low alloy stee...During the past thirty years, two generations of low alloy steels(ferrite/pearlite followed by bainite/martensite) have been developed and widely used in structural applications. The third-generation of low alloy steels is expected to achieve high strength and improved ductility and toughness, while satisfying the new demands for weight reduction, greenness, and safety. This paper reviews recent progress in the development of third-generation low alloy steels with an M^3 microstructure, namely, microstructures with multi-phase, meta-stable austenite, and multi-scale precipitates. The review summarizes the alloy designs and processing routes of microstructure control, and the mechanical properties of the alloys.The stabilization of retained austenite in low alloy steels is especially emphasized. Multi-scale nano-precipitates, including carbides of microalloying elements and Cu-rich precipitates obtained in third-generation low alloy steels, are then introduced. The structure–property relationships of third-generation alloys are also discussed. Finally, the promises and challenges to future applications are explored.展开更多
Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation re...Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation resistance at 900℃ of the aluminide coatings were studied. It was found that pack-aluminizing improves the microhardness of the 0.5Cro.5Mo-0.25V steel while it reduces the microhardness of the H85 steel. Pack aluminizing highly improves the oxidation resistance after 20h exposure at 900℃ in air for the investigated steels.展开更多
The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2...The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.展开更多
Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% N...Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different micmstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructnres may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long tenn. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.展开更多
The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves...The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools.展开更多
On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component ...On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component low alloy Steels during continuous cooling process was calculated. Influences of chemical composition, hot deformation of γ and cooling rate on Ar3 temperature were analyzed. Calculated Ar3 temperatures are in reasonable agreement with measured ones.展开更多
Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style...Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with.展开更多
Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector...Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.展开更多
The dry friction and wear characteristics of three kinds of friction couplesunder different loads, MoSi_2/45 tempered steel, MoSi_2/45 quenched steel, and MoSi_2/CrWMn steel,were investigated by using a friction and w...The dry friction and wear characteristics of three kinds of friction couplesunder different loads, MoSi_2/45 tempered steel, MoSi_2/45 quenched steel, and MoSi_2/CrWMn steel,were investigated by using a friction and wear tester. SEM and X-ray diffraction were employed toanalyze the microphotograph of the worn surface and the phase of worn pieces in order to reveal thewear mechanisms of MoSi_2 material. The results show that MoSi_2/CrWMn steel friction pair has gooddry friction and wear properties under the load of 80 N, where the friction coefficient is 0.255 andthe wear rate of MoSi_2 is only 14.72 mg centre dot km^(-1). But under the load of 150 N, it isMoSi_2/45 tempered steel friction pair that has good tribological properties, where the frictioncoefficient is 0.278 and the wear rate of MoSi_2 is only 10.6 mg centre dot km^(-1). The main wearmechanism of MoSi_2 under low loads is brittle fracture. With the increase of load, the main wearmechanism of MoSi_2 against 45 quenched steel or CrWMn steel is adhesive wear. However, the wearmechanism of MoSi_2 against 45 tempered steel is changed from oxidation-fatigue wear to adhesivewear.展开更多
This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress am...This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they fimcfion as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.展开更多
The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units o...The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”.展开更多
The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays t...The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ΣBOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects.展开更多
Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel ...Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.展开更多
A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results...A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results of three-point bend specimens as well as introducing an Arrhenius formula. It is shown that the results obtained by the given formula are in good agreement with the experimental ones in the thermal activation region. The present method is also valuable to describe the relationship between dynamic fracture toughness and temperature and loading rate of other high strength low alloy steels.展开更多
The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data suc...The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data such as 100 000h-creep rupture strength for 47 kinds of principal heat resisting steels and alloys, including welded joints. The long-term creep deformation behavior and microstructural evolution during creep have been shown to be complicated.展开更多
The corrosion behavior of corrosion resistant steel(CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel(CS) using corrosion loss, polarization curves, X-ray diffract...The corrosion behavior of corrosion resistant steel(CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel(CS) using corrosion loss, polarization curves, X-ray diffraction(XRD), scanning electron microscopy(SEM), electron probe micro-analysis(EPMA), N2 adsorption, and X-ray photoelectron spectroscopy(XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-Fe OOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet–dry acid humid environment.展开更多
In alloy bar rolling process, the component of alloyed steel influenced the spread coefficient greatly, therefore, the component influence coefficient m of different alloyed steel has been determined firstly to calcul...In alloy bar rolling process, the component of alloyed steel influenced the spread coefficient greatly, therefore, the component influence coefficient m of different alloyed steel has been determined firstly to calculate the maximum spread. Then the curvature radius of stress free surface and the "critical point on the contact boundary" have been solved, the surface profile of outgoing workpiece has been obtained. Furthermore, the formula of the equivalent contact section area has been proposed and the mean roll radius has been calculated. The bar rolling experiment and the rigid-plastic FEM (finite element method) simulation have been carried out to verify the novel approach. Compared with experimental data and simulation results, the novel approach can be used in setting processing parameter and design of finishing groove.展开更多
基金Kut Technical Institute for their funding supports。
文摘The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.
基金financially supported by the Postdoctoral Science Foundation of China (No. 2014M550415)the National Natural Science Foundation of China (No. 50734004)
文摘The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then grew in different directions through movement of grain boundaries into the ferrite phase. Subsequently, the adjacent austenite grains impinged against each other during the α→γtransformation. After the α→γ transformation, austenite grains coarsened via the coalescence of small grains and via boundary migration between grains. The growth process of austenite grains was a continuous process during heating, isothermal holding, and cooling in simulated thermal cycling. Abundant finely dispersed nanoscale TiN particles in a steel specimen containing 0.012wt% Ti effectively retarded the grain boundary migration, which resulted in refined austenite grains. When the Ti concentration in the steel was increased, the number of TiN particles de- creased and their size coarsened. The big particles were not effective in pinning the austenite grain boundary movement and resulted in coarse austenite grains.
基金Pangang Group, Vanadium International Technical Committee, and FRF-IC-11-005 for their financial supports
文摘The hot ductility of V-N and V-Nb microalloyed steels was investigated on a Gleeble-1500 thermomechanical simulator, and the results were compared with those of V and Nb microalloyed steels. A ductility trough is found in both the steels in the temperature range of 700 to 1050℃. Compared to the V steel, the V-N steel has a wider and deeper ductility trough with the increase of N content, due to the in- creased precipitation of V(C, N) in the steel. Above 930℃, when 0.047wt% V is added to the 0.028wt% Nb-containing steel, the ductility becomes worse, owing to the rise of the onset dynamic recrystallization temperature. However, the ductility gets better at 800 to 930℃ be- cause of the coarsening of precipitates in austenite. With the improvement in ductility, the fracture mechanism is changed from intergranular to high ductile fracture in the temperature range of 800 to 1050℃.
基金financially supported by the National Natural Science Foundation of China (No. 51701012)the National Basic Research Program of China (973 Program: No. 2010CB630801)the Fundamental Research Funds for the Central Universities (No. FRF-TP-17-004A1)
文摘During the past thirty years, two generations of low alloy steels(ferrite/pearlite followed by bainite/martensite) have been developed and widely used in structural applications. The third-generation of low alloy steels is expected to achieve high strength and improved ductility and toughness, while satisfying the new demands for weight reduction, greenness, and safety. This paper reviews recent progress in the development of third-generation low alloy steels with an M^3 microstructure, namely, microstructures with multi-phase, meta-stable austenite, and multi-scale precipitates. The review summarizes the alloy designs and processing routes of microstructure control, and the mechanical properties of the alloys.The stabilization of retained austenite in low alloy steels is especially emphasized. Multi-scale nano-precipitates, including carbides of microalloying elements and Cu-rich precipitates obtained in third-generation low alloy steels, are then introduced. The structure–property relationships of third-generation alloys are also discussed. Finally, the promises and challenges to future applications are explored.
文摘Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation resistance at 900℃ of the aluminide coatings were studied. It was found that pack-aluminizing improves the microhardness of the 0.5Cro.5Mo-0.25V steel while it reduces the microhardness of the H85 steel. Pack aluminizing highly improves the oxidation resistance after 20h exposure at 900℃ in air for the investigated steels.
文摘The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.
基金supported by the Major State Basic Research and Development Program of China (No.2004CB619102)
文摘Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different micmstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructnres may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long tenn. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.
文摘The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools.
文摘On the basis of superelement model, Cahn's transformation kinetics theory and Scheil's additivity rule, actual γ/α transformation start temperature, A.3 in Fe-Σ Xi-C (Xi=Mn, Si, Ni, Mo etc.)multi-component low alloy Steels during continuous cooling process was calculated. Influences of chemical composition, hot deformation of γ and cooling rate on Ar3 temperature were analyzed. Calculated Ar3 temperatures are in reasonable agreement with measured ones.
文摘Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with.
文摘Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.
文摘The dry friction and wear characteristics of three kinds of friction couplesunder different loads, MoSi_2/45 tempered steel, MoSi_2/45 quenched steel, and MoSi_2/CrWMn steel,were investigated by using a friction and wear tester. SEM and X-ray diffraction were employed toanalyze the microphotograph of the worn surface and the phase of worn pieces in order to reveal thewear mechanisms of MoSi_2 material. The results show that MoSi_2/CrWMn steel friction pair has gooddry friction and wear properties under the load of 80 N, where the friction coefficient is 0.255 andthe wear rate of MoSi_2 is only 14.72 mg centre dot km^(-1). But under the load of 150 N, it isMoSi_2/45 tempered steel friction pair that has good tribological properties, where the frictioncoefficient is 0.278 and the wear rate of MoSi_2 is only 10.6 mg centre dot km^(-1). The main wearmechanism of MoSi_2 under low loads is brittle fracture. With the increase of load, the main wearmechanism of MoSi_2 against 45 quenched steel or CrWMn steel is adhesive wear. However, the wearmechanism of MoSi_2 against 45 tempered steel is changed from oxidation-fatigue wear to adhesivewear.
基金supported by the National Natural Science Foundation of China(Nos.51375033 and 51405006)
文摘This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they fimcfion as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.
文摘The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”.
文摘The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LOOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ΣBOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects.
文摘Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.
文摘A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results of three-point bend specimens as well as introducing an Arrhenius formula. It is shown that the results obtained by the given formula are in good agreement with the experimental ones in the thermal activation region. The present method is also valuable to describe the relationship between dynamic fracture toughness and temperature and loading rate of other high strength low alloy steels.
文摘The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data such as 100 000h-creep rupture strength for 47 kinds of principal heat resisting steels and alloys, including welded joints. The long-term creep deformation behavior and microstructural evolution during creep have been shown to be complicated.
基金the funding support from the National Natural Science Foundation of China(No.51571027)
文摘The corrosion behavior of corrosion resistant steel(CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel(CS) using corrosion loss, polarization curves, X-ray diffraction(XRD), scanning electron microscopy(SEM), electron probe micro-analysis(EPMA), N2 adsorption, and X-ray photoelectron spectroscopy(XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-Fe OOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet–dry acid humid environment.
文摘In alloy bar rolling process, the component of alloyed steel influenced the spread coefficient greatly, therefore, the component influence coefficient m of different alloyed steel has been determined firstly to calculate the maximum spread. Then the curvature radius of stress free surface and the "critical point on the contact boundary" have been solved, the surface profile of outgoing workpiece has been obtained. Furthermore, the formula of the equivalent contact section area has been proposed and the mean roll radius has been calculated. The bar rolling experiment and the rigid-plastic FEM (finite element method) simulation have been carried out to verify the novel approach. Compared with experimental data and simulation results, the novel approach can be used in setting processing parameter and design of finishing groove.