Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behavio...Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX).展开更多
The effects of didymium(Nd : Pr = 3 : 1 )on the microstructure and mechanical properties of Mg-10%A1 alloy were studied with the additions of 0~3%Di. The small block-like Al2(Nd,Pr) phase appears in 1%Di alloy, the bl...The effects of didymium(Nd : Pr = 3 : 1 )on the microstructure and mechanical properties of Mg-10%A1 alloy were studied with the additions of 0~3%Di. The small block-like Al2(Nd,Pr) phase appears in 1%Di alloy, the blocklike Al2(Nd,Pr) and needle-like Al11(Nd,Pr)3 phases appear synchronously in 2%Di and 3%Di alloys, while the network of (Mg17Al12)βphase is broken up. The tensile properties can be improved with the addition of didymium. When the addition of didymium in Mg-10%A1 alloy reaches 2% , the alloy exhibits the best combination of strength and ductility, but the strength and ductility drop at the addition of 3% Di due to the obvious increase of the size and quantity of the needle-like Al11(Nd,Pr)3 phase.展开更多
The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti...The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and...The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.展开更多
The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating load...The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating loading in tension(R=0,R is the dynamic factor).The fatigue−life(S−N)curves were modelled with a conditional Weibull’s probability density function,where the real-valued genetic algorithm(GA)and the differential ant-stigmergy algorithm(DASA)were applied to estimating the needed Weibull’s parameters.The fractography of the fatigue specimens showed that the fatigue cracks initiated around the surface defects produced by SLM and then propagated in an unstable manner.However,the presence of large SLM defects mainly influenced the crack initiation period and did not have a strong influence on the crack propagation.The obtained experimental results present a basis for further investigation of the fatigue behaviour of advanced materials and structures(e.g.cellular metamaterials)fabricated by additive manufacturing(AM).Especially,in the case of two-dimensional cellular structures,the cross-section of cellular struts is usually rectangular which corresponds to the specimen shape considered in this work.展开更多
The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock...The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock in forming operations. The experiments included the application of ultrasonic vibrations to the molten alloys via direct and indirect techniques. Several process parameters such as pouring temperatures(several temperatures between 740 and 660℃), and treatment time(from 12 min down to 2 min) were investigated. The experiment included continuous ultrasonic treatment from the liquid to the semisolid states. The results showed that both treatment techniques were viable for producing billets with the desirable microstructural characteristics. The optimum treatment conditions were the short treatment time(2 to 3 min), from about 660℃ down to 615℃ for the indirect treatment technique, and from 660℃ to 635℃ for the direct treatment technique. The resulting microstructures, at three positions along the height of the ingot, were characterized by fine, non-dendritic α(Al) grains in the order of a hundred microns, as compared to few thousands of microns for the conventional cast ingots. The intermetallic particles were also refined in size and modified in morphology by the ultrasonic treatment. The operating mechanisms by which the ultrasonic vibrations altered the ingot microstructures were discussed and analyzed.展开更多
Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties ...Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing.展开更多
Binary Al-4Mg alloy have been deformed by hot torsion at 300-500 deg C andstrain rates of 0.006-1.587 s^(-1) to a true strain of 5.5. The specimens were annealed in vacuumfor 1.5 h at 500 deg C and then water quenched...Binary Al-4Mg alloy have been deformed by hot torsion at 300-500 deg C andstrain rates of 0.006-1.587 s^(-1) to a true strain of 5.5. The specimens were annealed in vacuumfor 1.5 h at 500 deg C and then water quenched. The study indicates that the dynamicrecrystallization occurs during hot torsion of Al-4Mg alloy in a certain range of Z parameter(Zener-Hollmon Parameter), i.e. 19.3 <= lnZ <=24.8. Increasing the strain rate at higher deformationtemperature or reducing the strain rate at lower deformation temperature accelerates the occurrenceof dynamic recrystallization in the alloy.展开更多
This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%pla...This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%plastic strain along the rolling direction(RD)to activate{10-12}twinning and is subsequently annealed at 200,250,300,350,and 400℃.Numerous{10-12}twins are formed throughout the compressed material,leading to the formation of a RD-oriented texture.At an annealing temperature of 200℃,no microstructural variations occur during annealing.As the annealing temperature increases from 250 to 400℃,the residual strain energy and remaining twin boundaries of the annealed material decrease owing to the promoted static recovery and the increased area fraction of twin-free grown grains.Consequently,an increase in the annealing temperature results in a gradual microstructural transition from a fully twinned grain structure to a completely twin-free grain structure.The microstructural evolution during annealing is predominantly governed by the movement of high-angle grain boundaries via a strain-induced boundary migration mechanism,and a few twin boundaries migrate above 350℃because of their lower boundary energy.The boundary migration behavior and resultant microstructural evolution are discussed in detail based on the variations in boundary mobility and driving force for boundary migration with annealing temperature.展开更多
基金partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1005726)Technology development Program (No. RS-2023-00220823) funded by the Ministry of SMEs and Startups (MSS, Korea)+1 种基金the Electronics Technology Development Project (No. 20026289) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)partly supported by the research grant of the Kongju National University in 2022
文摘Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX).
基金Project supported by the Science & Technology Bureau of Sichuan Province of China (04GG1589)
文摘The effects of didymium(Nd : Pr = 3 : 1 )on the microstructure and mechanical properties of Mg-10%A1 alloy were studied with the additions of 0~3%Di. The small block-like Al2(Nd,Pr) phase appears in 1%Di alloy, the blocklike Al2(Nd,Pr) and needle-like Al11(Nd,Pr)3 phases appear synchronously in 2%Di and 3%Di alloys, while the network of (Mg17Al12)βphase is broken up. The tensile properties can be improved with the addition of didymium. When the addition of didymium in Mg-10%A1 alloy reaches 2% , the alloy exhibits the best combination of strength and ductility, but the strength and ductility drop at the addition of 3% Di due to the obvious increase of the size and quantity of the needle-like Al11(Nd,Pr)3 phase.
基金Project(2009BAE71B00) supported by the National Key Technology R&D Program during the Eleventh Five-Year Plan Period
文摘The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moir&#233; fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.
基金Project(51274245) supported by the National Natural Science Foundation of China
文摘The microstructural evolution and mechanical properties of Al-18 Si-4 Cu-0.5 Mg alloy modified by the addition of La-Ce rare earth elements through OM,SEM,EPMA and tensile tests were investigated.The results of OM and SEM analyses indicated that primary Si particles were significantly refined from coarse block-like and irregular polygonal shapes into fine flaky shapes,while eutectic Si particles were modified from coarse and needle-like into fine and rod-or coral-like shapes with increase of La-Ce addition.The alloy exhibited the minimum primary Si particle size and the best mechanical properties with the addition of 0.3 wt.%La-Ce.The average particle size decreased from 61 to 28 μm,the ultimate tensile strength increased from 222 to 242 MPa and the elongation increased from 3.2% to 6.3%.In addition,modification mechanisms and fracture modes were explored by the means of SEM and EPMA.
基金the research core funding(No.P2-0063)the basic research project(No.J2-8186)from the Slovenian Research Agency.
文摘The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating loading in tension(R=0,R is the dynamic factor).The fatigue−life(S−N)curves were modelled with a conditional Weibull’s probability density function,where the real-valued genetic algorithm(GA)and the differential ant-stigmergy algorithm(DASA)were applied to estimating the needed Weibull’s parameters.The fractography of the fatigue specimens showed that the fatigue cracks initiated around the surface defects produced by SLM and then propagated in an unstable manner.However,the presence of large SLM defects mainly influenced the crack initiation period and did not have a strong influence on the crack propagation.The obtained experimental results present a basis for further investigation of the fatigue behaviour of advanced materials and structures(e.g.cellular metamaterials)fabricated by additive manufacturing(AM).Especially,in the case of two-dimensional cellular structures,the cross-section of cellular struts is usually rectangular which corresponds to the specimen shape considered in this work.
文摘The objective of the current study was to investigate the use of ultrasonic melt treatment technology in the production of grain-refined billets of the AC7 A alloy, which was intended for subsequent use as a feedstock in forming operations. The experiments included the application of ultrasonic vibrations to the molten alloys via direct and indirect techniques. Several process parameters such as pouring temperatures(several temperatures between 740 and 660℃), and treatment time(from 12 min down to 2 min) were investigated. The experiment included continuous ultrasonic treatment from the liquid to the semisolid states. The results showed that both treatment techniques were viable for producing billets with the desirable microstructural characteristics. The optimum treatment conditions were the short treatment time(2 to 3 min), from about 660℃ down to 615℃ for the indirect treatment technique, and from 660℃ to 635℃ for the direct treatment technique. The resulting microstructures, at three positions along the height of the ingot, were characterized by fine, non-dendritic α(Al) grains in the order of a hundred microns, as compared to few thousands of microns for the conventional cast ingots. The intermetallic particles were also refined in size and modified in morphology by the ultrasonic treatment. The operating mechanisms by which the ultrasonic vibrations altered the ingot microstructures were discussed and analyzed.
基金Projects(2015GB107003,2015GB119001)supported by the International Thermonuclear Experimental Reactor(ITER)Program,ChinaProjects(51474155,11672200,51674175)supported by the National Natural Science Foundation of China
文摘Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing.
基金The project was sponsored by the Education Administration Major Project for Science Research under the contract No. 99134.
文摘Binary Al-4Mg alloy have been deformed by hot torsion at 300-500 deg C andstrain rates of 0.006-1.587 s^(-1) to a true strain of 5.5. The specimens were annealed in vacuumfor 1.5 h at 500 deg C and then water quenched. The study indicates that the dynamicrecrystallization occurs during hot torsion of Al-4Mg alloy in a certain range of Z parameter(Zener-Hollmon Parameter), i.e. 19.3 <= lnZ <=24.8. Increasing the strain rate at higher deformationtemperature or reducing the strain rate at lower deformation temperature accelerates the occurrenceof dynamic recrystallization in the alloy.
基金supported by the National Research Foundation of Korea(NRF,Grant No.2019R1A2C1085272)funded by the Ministry of Science,ICTFuture Planning(MSIP,South Korea)。
文摘This study investigates the variations in the microstructural characteristics of a pre-twinned Mg alloy with the temperature of the subsequent annealing treatment.To this end,a rolled AZ31 alloy is compressed to 3%plastic strain along the rolling direction(RD)to activate{10-12}twinning and is subsequently annealed at 200,250,300,350,and 400℃.Numerous{10-12}twins are formed throughout the compressed material,leading to the formation of a RD-oriented texture.At an annealing temperature of 200℃,no microstructural variations occur during annealing.As the annealing temperature increases from 250 to 400℃,the residual strain energy and remaining twin boundaries of the annealed material decrease owing to the promoted static recovery and the increased area fraction of twin-free grown grains.Consequently,an increase in the annealing temperature results in a gradual microstructural transition from a fully twinned grain structure to a completely twin-free grain structure.The microstructural evolution during annealing is predominantly governed by the movement of high-angle grain boundaries via a strain-induced boundary migration mechanism,and a few twin boundaries migrate above 350℃because of their lower boundary energy.The boundary migration behavior and resultant microstructural evolution are discussed in detail based on the variations in boundary mobility and driving force for boundary migration with annealing temperature.